
18th December 2007

Generic Format for Sequence Data

Version 1.3

v1.3 Generic Format for Sequence Data
18/12/2007

Background

This document describes a machine and technology independent format for storing DNA sequence data and
associated quality values. This document is preliminary and subject to change.

Contacts

Change history

The following table shows the change history for this format.

Version Date Autho
r

Comments

0.1 15 Oct 2006 Original content.

0.1.5 29th Oct 2006

0.2 13th Nov 2006 Modified per comments received at Nov 2nd telecon.

0.2.1 26th Nov 3006 Modified per comments received by e-mail. Incorporated Read
Header and ZTR format.

0.3 11th Dec 2006 Modified per comments received at Dec 7th telecom

1.0
DRAFT

9th Jan 2007 Version 1.0 for approval

1.0
DRAFT

28th Jan 2007 Version 1.0 revised for approval

1.0 11th Feb 2007 Approved version

1.1.1 11th Jul 2007 First draft of next version. Changes to container structure,
indexing and read header

1.1.2 29th Jul 2007 Minor changes following comments received at the NCBI
meeting. Changes made to readFlags in read header, XML
block, data header block, and index block. Some additional
cosmetic changes.

1.2 6th August 2007 Version 1.2

1.3 18th Dec 2007 Changes to read id format and minor changes to index format

Page ii

 3/30/2008

Table of contents

1. Overview ...6
1.1 Scope and purpose..6

2. References ...7

3. Terms, definitions, and notation..8
3.1 Conformance levels..8
3.2 Glossary of terms ...8

4. Abbreviations and acronyms ...9

5. Requirements...10

6. Format Specification ...11
6.1 General ...11

6.1.1 Strings ..12
6.2 Container Header ...12
6.3 XML Block ..13
6.4 Data Block Header ...13
6.5 Data Block..13

6.5.1 Read Header...14
6.5.2 ZTR Blob ...14
6.5.3 Unique Read Id ..14
6.5.4 Defining Read Pairs and Other Read Features...16

6.6 Index Block ..17
6.6.1 Hash Function ..18

 Page iii

v1.3 Generic Format for Sequence Data
18/12/2007

List of figures
Figure 6.1—A single container..11
Figure 6.2—Multiple containers..12

List of tables
Table 5.1—Format Requirements..10
Table 6.1—Block format ...12
Table 6.2—Container Header Format ...12
Table 6.3—XML Block Format ..13
Table 6.4—Data Block Header Format ...13
Table 6.5—Read Header Format ...14
Table 6.6— Read Identifier formatting characters ..15
Table 6.6— Unique Read Identifier ..16
Table 6.7—Index Block Format ..17

Page iv

 3/30/2008

 Page v

v1.3 Generic Format for Sequence Data
18/12/2007

1. Overview

1.1 Scope and purpose

Scope: This document describes a format for storing nucleic acid sequence information. The format is
designed to be machine and technology independent.

Purpose: The format has been developed to provide a single, uniform format for DNA sequence data.
The format has primarily been designed to support data archival, data exchange. Its secondary purpose
is to support data submission to the NCBI Short Read Archive.

Page 6

 3/30/2008

2. References

[R1] IUPAC Nucleotide Code - IUB (Nomenclature Committee, 1985, Eur. J. Biochem. 150; 1-5).

[R2] Brent Ewing, LaDeana Hillier, Michael C. Wendl, and Phil Green. Base-calling of automated
sequencer traces using PHRED. I. Accuracy assessment. 1998. Genome Research 8:175-185.

[R3] Brent Ewing and Phil Green Base-calling of automated sequencer traces using PHRED. II. Error
probabilities. 1998. Genome Research 8:186-194

[R4] Extensible Markup Language (XML) 1.0 (Fourth Edition) W3C Recommendation 16 August
2006, Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau eds.

[R5] ZTR: a new format for DNA sequence trace data . James K. Bonfield and Rodger Staden.
Bioinformatics 18:3-10

 Page 7

v1.3 Generic Format for Sequence Data
18/12/2007

3. Terms, definitions, and notation

3.1 Conformance levels

Several keywords are used to differentiate between different levels of requirements and optionality, as
follows:

3.1.1 expected: Describe the behavior of the hardware or software in the design models assumed by this
specification. Other hardware and software design models may also be implemented.

3.1.2 may: Indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”).

3.1.3 shall: Indicates mandatory requirements strictly to be followed in order to conform to the standard
and from which no deviation is permitted (“shall” means “is required to”).

3.1.4 should: An indication that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not necessarily
required; or that (in the negative form) a certain course of action is deprecated but not prohibited (“should”
means “is recommended to”).

3.2 Glossary of terms

3.2.1 byte: Eight bits of data, used as a synonym for octet.

3.2.2 Base caller: A program used to identify the bases in a sequence read from the data generated by a
sequencing machine.

3.2.3 Big endian: Indicates that the byte order for an integer stored in multiple bytes is most significant
byte first.

3.2.4 Read: A sequence of nucleic acids. Usually refers to a sequence generated by a sequencing machine.

3.2.5 Flow traces: Sequence read information generated by certain types of sequencing machines (for
example the Roche/454 FLX sequencer).

3.2.6 ZTR: A block based format originally developed to store ABI trace files [R-5].

Page 8

 3/30/2008

4. Abbreviations and acronyms

This document contains the following abbreviations and acronyms:

CH Container Header

DB Data Block

DBH Data Block Header

DNA Deoxyribose Nucleic Acid

IB Index Block

ID identifier

NCBI National Centre for Biotechnology Information

PHRED

RH Read Header

URL Uniform Resource Locator

UTF-8 8-bit Universal Character Set/Unicode Transformation Format

XML eXtensible Markup Language

 Page 9

v1.3 Generic Format for Sequence Data
18/12/2007

5. Requirements

The standard has been developed to fulfill the following requirements

Table 5.1—Format Requirements

Requirement Id Requirement Reference

RQ-1 The standard shall be open.

RQ-2 The standard shall have a streamable format

RQ-3 The standard should allow data to be stored in an efficient
manner (i.e. consume the least amount of disk space).

RQ-3 The standard shall support random access to the data file.

RQ-4 The standard shall not require experimental information.

RQ-5 The standard shall support individual reads and sets of
multiple reads.

RQ-6 The standard will support a unique identifier for each read.

RQ-7 Multi-byte order shall be big endian.

RQ-8 The standard shall support the storage of reads from different
platforms in the same file.

RQ-9 The standard shall not require image data (and their
equivalent) to be stored.

Page 10

 3/30/2008

6. Format Specification

6.1 General

A data file is comprised of one or more containers. Each container is comprised of several blocks.

Container Header (CH) – The first block in a container is the Container Header. There is only one such
block per container and it contains general information about the container.

XML Block – The CH may be followed by an XML (R-4).

Data Block Header (DBH) – The Data Block Header is followed by one or more Data Blocks. It contains
information common to the Data Blocks that follow it.

Data Block (DB) – The Data Blocks contain the actual sequence data and associated quality values. Each
Data Block contains information about a single read. Data Blocks utilize the ZTR format (R-5) and
comprise a Read Header (RH) and a ZTR blob.

The last block in a file is the optional index block.

Index Block (IB) – The index block is an optional block that contains a hash-based index. The index
enables a fast lookup of the location of every read in every container in the file. The format of the index
block allows it to be stored in a separate file to the containers.

The last 8 bytes in the file are used to store the size of the index block (in bytes). If the index block is not
present, the size of the index is given as zero bytes.

The following figure provides an example of a file containing a single container.

CH

DB

DBH

XML Block (optional)

DB

DBH

DB

DB

IB (optional)

DB

Index Block Size

C
on

ta
in

er

Figure 6.1—A single container

A single file may contain several container structures. Each container is independent and thus containers
can be added or removed from the file without disrupting the integrity of the file.

The following figure provides an example of a file containing several containers.

 Page 11

v1.3 Generic Format for Sequence Data
18/12/2007

Container

Container

Container

Container

IB (optional)

Index Block Size

Figure 6.2—Multiple containers
The index block may be stored in a separate file to the CH and DB blocks. The DBH blocks may be in the
same file as the CH and DB blocks or in a separate file.

With the sole exception of the index block and container header, all blocks begin with a single character
block type and a block size.

Table 6.1—Block format

Field Description Type Value

blockType The type of block. char[1]

blockSize The size of the entire block (including the blockType and
blockSize fields

unit 32

Data Block data

6.1.1 Strings

Strings are specified either as fixed length (length indicated in square brackets) or as variable length
(indicated by an asterix, ‘*’). For variable length strings, the first byte contains an unsigned int that
indicates the number of characters in the string and hence the number of bytes that follow the unsigned int.
If a string is optional and no value is to be stored, the length is specified as zero.

6.2 Container Header

The Container Header contains general information about the file. The header includes information about
the basecaller used to create call bases of the read. A consequence of this aspect of the format is that a
single container may only contain reads called by the same base caller and hence all the reads will (likely)
be generated by a single technology. It is not anticipated that the same read will be repeated in multiple
containers called by different base callers. Since a single file may contain multiple containers, this
limitation on containers is not a great encumbrance to the format.

Table 6.2—Container Header Format

Field Description Type Value

blockType The type of block. char[4] SSRF

blockSize The size of the entire block (including the blockType and
blockSize fields

unit 32

version The version of the standard. char * 1.3

ContainerType The type of blob stored in this container. The only
supported value is ‘Z’ for ZTR.

char[1] ‘Z’

Page 12

 3/30/2008

Field Description Type Value

baseCaller The name of the base caller used to call the read. char *

baseCallerVersion The version of the base caller char *

6.3 XML Block

The XML Block is optional. If present, it is block of UTF-8 characters in XML format (R-4).

Table 6.3—XML Block Format

Field Description Type Value

blockType The type of block. char[1] ‘X’

blockSize The size of this block uint 32

XML XML text. The XML record may be used to store additional
user defined data. The record “NCBI_submission” is reserved
and its form defined by NCBI.

*

6.4 Data Block Header

The Data Block Header contains information common to the next series of Data Blocks.

Table 6.4—Data Block Header Format

Field Description Type Value

blockType The type of block. char[1] H

blockSize The size of this block. uint 32

subBlockType Field reserved to allow different types of Data Block Headers
in the future. The only type of data block available in the
current format is an “E” block or explicit block.

char[1] E

uniqueIdPrefix All reads in the data block header have the same unique id
prefix. The prefix is a variable length string and may be zero
bytes. Refer to section 6.5.3 for more details.

char *

headerBlob The header blob. The size of the header blob is deduced from
the block size.

*

6.5 Data Block

Each data blocks is comprised of a Read Header and followed by a ZTR blob.

 Page 13

v1.3 Generic Format for Sequence Data
18/12/2007

6.5.1 Read Header

Table 6.5—Read Header Format

Field Description Type Value

blockType The type of block. char[1] R

blockSize The size of the block unit 32

readFlags Each bit may be set to indicate a status for the read. The bits
are set to 1 if the flag is true.

Bit 1: Is the read bad?

Bit 2: Has the read been withdrawn?

Bits 3-5: reserved

Bits 6-8: user definable

1 byte \000

readId The readId is a variable length string. When combined with
the uniqueIdPrefix, it yields the unique read id.

char *

dataBlob The data blob. The size of this field is deduced from the
blockSize.

*

6.5.2 ZTR Blob

The ZTR Blob is comprised of several ZTR chunks. For details of the ZTR format refer to
http://staden.sourceforge.net/manual/formats_unix_12.html. This format support ZTR version 1.3.

MANUFACTURER PARAGRAPHS – VENDORS to provide details on how their data will be organized
in ZTR.

6.5.3 Unique Read Id

Each read is assigned a unique read identifier. The unique read id may be globally unique or locally unique.
Locally unique ids are unique within a single file, whereas globally unique ids are unique everywhere. The
generator of the file is responsible for ensuring read id uniqueness.

When creating the container, the unique read is split into two parts: the unique identifier prefix in the Data
Block Header and the readId in the Read Header.

The read id is optional, but its absence prevents the container from being indexed. Local read ids may be
utilized to index a file that has no read ids.

The read name is constructed by using a common name prefix stored in the Data Block Header
(uniqueIdPrefix) and a suffix stored per-trace in the Read Header (readId). Both of these are strings in the
same format used elsewhere; the first byte indicating their length.

The simplest form of trace name is a direct concatenation of the two strings. This is used whenever the
uniqueIdPrefix does not contain a '%' character.

Page 14

http://staden.sourceforge.net/manual/formats_unix_12.html

 3/30/2008

To save space it is possible to encode the Read Header name component in binary and specify how this
should be decoded by embedded percent expansion rules within the uniqueIdPrefix. The percent expansion
rules take the following form:

%<field-width>.<bits-used><format>

"<field-width>" is the minimum number of characters used to format this piece of data. It is optional and
defaults to 1. The characters used to pad out a format value that is too small will vary depending on the
format used. See below for details.

".<bits-used>" indicates how many bits to use from the readId, starting from bit 7 (and decreasing from
there) or the next free bit following a previous %format. It is optional and if not specified generally all bits
are used unless indicated otherwise below.

"<format>" controls how the bits are formatted to generate the trace name. It must be one of the following:

Table 6.6— Read Identifier formatting characters

Formatting character Description

%d Decimal number. When field-width is longer than the
number it is padded out with preceding zeros ('0').

%o Octal number. The padding character is '0'.

%x Hexadecimal lowercase; 0-9 and a-f. The padding character is
'0'.

%X Hexadecimal uppercase; 0-9 and A-F. The padding character
is '0'.

%j Base-36 encoding a-z and 0-9 in that order. The
padding character is 'a'.

%J Base-36 encoding A-Z and 0-9 in that order. The
padding character is 'A'.

%c ASCII character. A single character of <bits-used> bits
or 8 if no <bits-used> is specified. The field-width
value is ignored.

%s A string - essentially repeated '%c' until all bits are
consumed. The field-width value is ignored. Note that a
single %s on the end of the uniqueIdPrefix is equivalent
to the defaul concatenation rule when no percent-
expansion is found.

% A literal percent sign. No bits of readId are consumed.
The field-width value is ignored. Note: a decoded read
id may only contain the characters A-Za-z0-9 and
underscore “_”. Hence this coding should not be used.

Note that in the above if the number of bits is specified as more than 32 then it is treated a series of 32-bit
blocks. This has no impact on octal and hexadecimal encodings, but may give unexpected results with other
formats.

For example, to store a trace name of the format "run_lane_tile_x_y" with x and y being two values
between 0-1023 inclusive we can observe that the coordinates need only 12-bits each, thus the pair of them
fit in 24-bits, or 3 bytes (plus 1 for the string lenth). Our uniqueIdPrefix could then be (27)
"run_lane_tile_%3.12X_%3.12X". If the X and Y coordinates are 999 and 196 then the readId would

 Page 15

v1.3 Generic Format for Sequence Data
18/12/2007

consist of hex 03 3e 70 c4 and together this would generate a string for the name as
"run_lane_tile_3E7_0C4".

The read id may contain format characters identified by % (similar to printf statements). When these format
characters are present in the prefix, the readId in the RH is interpreted according to the formatting
characters.

The following formats for identifiers utilize the type “String”. When these identifiers are encoded into the
DBH and DB, they are encoded as type char *.

When decoded, the unique read identifiers adhere to the following form:

Table 6.7— Unique Read Identifier

Field Description Type Value

namespace Namespace to avoid clashes. string

read Alphanumeric string. Underscores permitted. Allowed
character set [A-Za-z0-9_]

string

6.5.3.1 Preassigned namespaces

Namespaces ‘T’, ‘X’ and ‘L’ are reserved for local read ids.

Vendors are assigned name spaces as follows.

VRO – 454/Roche

VAB – ABI

VHE - Helicos

VIL – Illumina/Solexa

Sequencing centres wishing to distribute global read ids may do so using their NCBI registered trace
repository identifier, prefixed with an ‘N’.

6.5.4 Defining Read Pairs and Other Read Features

A single “read” may be comprised of multiple reads, read pairs or other features (e.g. primers). This
information is encoded in the ZTR chunks. The data block header ZTR blob contains a TEXT chunk named
REGION_LIST that describes the components of the reads that follow. Hence, the same REGION_LIST
applies to all reads that follow. The read header ZTR blob contains a REGN chunk that describes the
boundaries between each component of the read. For more details refer to the ZTR specification.

Page 16

 3/30/2008

6.6 Index Block

The Index Block provides a lookup hash for every read in the block. Once a DB for a read is identified, the
corresponding DBH is the one that precedes the location of the DB in the container.

Table 6.8—Index Block Format

Field Description Type Value

blockType The type of block. char[4] I

version The version of the index. char [4] 1.00

indexSize The size of the index uint 64

IndexType The type of index. This index supports explicit DBHs only. char[1] ‘E’

dbhPositionsStoredSep
arately

This byte indicates whether the read entry contains a field
indicating the DBH associated with the read. This field is
only required if the DBHs are stored in a separate file or if
the reads are re-ordered to optimize bulk data reads.

char[1] 0 or 1

numberOfContainers The number of containers in the file. uint 32

numberOfDBHs The number of DBHs in the file. uint 32

numberOfHashBuckets The number of hash buckets in the file. uint 64

dbhFile If the DBHs are stored in a separate file, the field contains
the name of this file.

char *

containerFile If the container and reads are stored in a separate file, the
field contains the name of this file. The dbhFile and
containerFile can be the same file.

char *

List (n=numberOfContainers)

 bytesToDBH The number of bytes from the start of the file to the container uint 64

End of List

List (n=numberOfDBHs)

 bytesToDBH The number of bytes from the start of the file to a DBH uint 64

End of List

List (n=numberOfHashBuckets)

 bucketOffset Offset relative to the start of the index for the item linked list. uint 64

End of List

List (n=number of reads in the file)

 entryByte Bits 0-6: Name disambiguation hash. If bit 1 is set, these bits
are set to zero, otherwise, the bits are a second short hash.

Bit 7: Linked list end. This bit is set to 1 if there are no more
entries in the present bucket.

1 byte

 readHeaderPosition The location of the read header in the file (offset from the
start of the file).

uint 64

 dbhIndex This field is only present if dbhPositionsStored is set to ‘1’.
This field stores the index of the DBH associated with this

uint 32

 Page 17

v1.3 Generic Format for Sequence Data
18/12/2007

Field Description Type Value
read in the DBH list.

End of List

blockType The type of block. char[4] I

version The version of the index. char [4] 1.00

indexSize The size of the index uint 64

6.6.1 Hash Function

The top-7 bits are used as a disamibuation hash instead of duplicating the trace name as a space-saving
measure. The hash function implemented is lookup3.c from http://burtleburtle.net/bob/hash/doobs.html.
The number of buckets MUST be a power of two. The disambiguation hash is the top 7 bits from the 64-bit
lookup3 hash value. Ie:
hval = hash64(HASH_FUNC_JENKINS3, (unsigned char *)tname, strlen(tname));
...
/* Secondary hash is the top 7-bits */
hval >>= 57;

if ((disambig & 0x7f) == hval) {
 /* Potential hit */
 ...

Page 18

http://burtleburtle.net/bob/hash/doobs.html

	Scope and purpose
	References
	Terms, definitions, and notation
	Conformance levels
	Glossary of terms

	Abbreviations and acronyms
	Requirements
	Format Specification
	General
	Strings

	Container Header
	XML Block
	Data Block Header
	Data Block
	Read Header
	ZTR Blob
	Unique Read Id
	Preassigned namespaces

	Defining Read Pairs and Other Read Features

	Index Block
	Hash Function

