
blkreplay and Sonar Diagrams
A manual for system administrators,

kernel developers,
hardware technicians,

and experts in IO systems

Thomas Schöbel-Theuer (tst@1und1.de)

Version 1.0.0

Copyright (C) 2012 Thomas Schöbel-Theuer / 1&1 Internet AG (see http://www.1und1.de
shortly called 1&1 in the following).
Permission is granted to copy, distribute and/or modify this document under the terms of

the GNU Free Documentation License, Version 1.3 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled “GNU Free Documentation
License”.

3

http://www.1und1.de

Abstract

blkreplay is a GPL’ed toolkit, driving the block layer of Linux (or other Unix-like OSes) while
measuring latency and throughput of IO operations for later visualization (so-called “sonar
diagrams” and others).
blkreplay comes with a modular and extensible test suite, automating large projects for

testing and/or benchmarking.
blkreplay can be used to test physical hardware, e.g. compare different brands of hard

disks, or RAID controllers / their settings / RAID rebuild performance degradation, or to
evaluate the effect of SSD caching, or to compare different block level transports like iSCSI vs
Fibrechannel (over different kinds of storage networks).
It can compare virtual hardware (like vmware or XenServer block devices, or any type of

block-level storage virtualization) to each other or to physical hardware, provided the test
setup is handled very carefully1.
blkreplay can compare commercial storage systems from vendors like EMC, NetApp,

IBM, Hitachi, etc to each other or to cheap off-the-shelf hardware (in order to determine the
price/performance ratio), provided the same care2 is taken.
Furthermore, it can be used for tests of the Linux kernel, e.g. for testing device drivers,

comparing IO schedulers at different load patterns, determining the overhead of Linux dm targets
or the impact of network problems to DRBD, and much more.
In addition to artificial loads like random read-write sweeps and various kinds of overload

tests, it can also replay natural loads which have been recorded by blktrace at heavily-loaded
production servers at big data centers. blkreplay comes with a large collection of natural
loads from a wide spectrum of applications (such as web servers, databases, dedicated servers,
etc) which have been released to the public by 1&1 under GPL. Some of these natural loads
have recorded the real-life disk access behaviour from servers serving thousands of customers
in parallel. Static analysis of the workingset behaviour of such natural loads is implemented.
At 1&1, blkreplay has even been used as a tool for root cause analysis of incidents: for

example, high load peaks presumably stemming from traffic jam (or other sources of overload)
were recorded at production sites in real time by blktrace, and later replayed in the laboratory
(without causing customer impact) seeking for the cause of trouble, or improving the safety
margins by choice of better hardware.
For experts in IO subsystems, visualization techniques like “sonar diagrams” can reveal (parts

of) the internal structure of complex IO systems, such as cache hierarchies or other hierarchical
storage systems.
As a community project under GPL, blkreplay is open to contributions from hardware

vendors, other data centers, the kernel hacker community, etc.

1Otherwise you may get useless fake results measuring the cache performance or even sparse accesses to holes
instead of the real hardware performance. Such fake results may differ from real results by factors, er even
by orders of magnitude. blkreplay comes with thorough descriptions teaching you how to avoid the most
common pitfalls.

2Notice that most commercial storage systems are in fact nothing but virtualized storage, so the above warnings
about possible fake results apply.

Contents

1. Why Synthetic Benchmarks suck 8

2. How blkreplay works 9
2.1. Principle . 9
2.2. Architecture of blkreplay . 9
2.3. Mode of Operation . 10
2.4. Overlapping of IO Requests . 11
2.5. Verification of Storage Semantics . 14

3. How to use blkreplay 15
3.1. How to Avoid Common Pitfalls . 15

3.1.1. Pitfalls from Storage Virtualization . 15
3.1.2. Pitfalls from Caches . 17

3.1.2.1. Pitfalls from Cache Operation States 17
3.1.2.2. Pitfalls from Cache Size . 17

3.1.3. Pitfalls from Workingset Sizes . 19
3.1.4. Pitfalls from Replay Device Sizes and Others 20
3.1.5. Pitfalls from Parallelism in IO Systems 21

3.1.5.1. Pitfalls from missing Parallelism 21
3.1.5.2. Pitfalls from too high IO Parallelism 22

3.2. Recommended Setup and Usage . 23
3.2.1. Planning Phase . 23

3.2.1.1. Describe the Scope of Project . 23
3.2.1.2. Describe the Setup of your Experiment 24
3.2.1.3. Select blkreplay Load . 24
3.2.1.4. Selection of Replay Duration . 24
3.2.1.5. Total Project Time . 25

3.2.2. Setup Phase . 25
3.2.2.1. Lab setup . 25
3.2.2.2. Configuration Files . 26
3.2.2.3. Meaning of the Config File Parameters 26

3.2.3. Benchmark Phase . 26
3.2.4. Visualization of Results . 28

3.2.4.1. Static Analysis (--static) . 29
3.2.4.2. Dynamic Analysis (--dynamic) 30

3.3. Human Interpretation of Results . 31
3.3.1. Sonar Diagrams . 31
3.3.2. Delay Diagrams . 32
3.3.3. Throughput Diagrams . 34
3.3.4. Flying Diagrams . 34
3.3.5. Corrolation Diagrams . 35

3.4. Advanced Features . 36
3.4.1. Modules . 36

3.5. Lowlevel Details and Expert Usage . 37
3.5.1. Internal Overhead . 37

4. How to use blktrace for Recording of Natural Loads 39

5. Experiences with some Setups and some Loads 41
5.1. Overload Tests . 41

5.1.1. Overload with Artificial Bursts . 41

6

Contents

5.1.2. Overload with (Derived) Natural Loads 44
5.2. Influence of Replay Parameters . 47

5.2.1. Influence of Request Ordering . 47
5.2.2. Influence of Number of Threads . 54
5.2.3. Influence of BBU units at RAID controllers 57
5.2.4. Influence of Bottlenecks . 59
5.2.5. Influence of strong Mode . 62

A. Config File Parameters 68
A.1. Basic Parameters . 68

A.1.1. File user_modules.conf: . 68
A.1.2. File default-main.conf: . 68

A.2. Ordinary Module Parameters . 73
A.2.1. File default-recreate_lvm.conf . 73
A.2.2. File default-create_lv.conf . 74
A.2.3. File default-iscsi_target_iet.conf 75
A.2.4. File default-iscsi_initiator.conf . 76
A.2.5. File default-scheduler.conf . 77
A.2.6. File default-wipe.conf . 78
A.2.7. File default-bbu_megaraid.conf . 78
A.2.8. File default-graph.conf . 79

A.3. Pipe Module Parameters . 80
A.3.1. File default-pipe_repeat.conf . 80
A.3.2. File default-pipe_slip.conf . 80
A.3.3. File default-pipe_subst.conf . 81
A.3.4. File default-pipe_spread.conf . 81
A.3.5. File default-pipe_resize.conf . 82
A.3.6. File default-pipe_cmd.conf . 82

B. File Format 84

C. Validation of the blkreplay Tool 85
C.1. Running blktrace during blkreplay . 85
C.2. Verbosity Graphics . 85

D. GNU Free Documentation License 92

7

1. Why Synthetic Benchmarks suck

There are a lot of benchmark tools around, like iozone, iometer, iperf, bonnie(++) and many
others.
What do they have in common1?

Simply, most of them generate an artificial load onto your system.

Artificial loads, as opposed to natural loads, have a main disadvantage: they cannot answer
questions like “will my application Z run on system A reliably?”

question artificial natural
Is system A better than B for application Z? partly

√

Does application Z run on system A? - √

It seems that some people believe that synthetic benchmarks can be used even at the position
of the dash in the above table. These people are wrong.
Experiences at big data centers at 1&1 show that sometimes the differences between re-

sults from artificial benchmarks and real-world application behaviour are very large. We found
cases where artificial benchmarks (adjusting parameters like IOPS) suggested that a particular
application should run on a particular hardware system, but the real application didn’t : after
deployment, a systematic series of incidents disproved2 the validity of the former benchmark re-
sults for the originally intended statement. The failed prediction from the artificial benchmarks
led to a failed invest.
What can we do about that?
Obviously, parameters like IOPS (even when enriched with attributes like “average IOPS”

or “peak IOPS”) are not representative for description of the real-world behaviour of applica-
tions. Attempts to describe real-world behaviour in mathematical terms of analytic functions
have been already made in the 1970’s; they failed. All such models can try to describe an
approximation of real-world behaviour, if enough knowledge about the application would be
available.
So why trying to deal with tools that never can fully describe real-world application behaviour,

when there exist tools which definitely can do?
One of them is blkreplay.

1Of course, the mentioned performance measuring tools are targeted at inspection of different components of
an OS, such as network, filesystem layer, and block IO layer. Here the question is a about commonality, not
differences.

2Sometimes we got results in the other direction: artificial benchmarks suggested that a particular application
would not run, but in reality it did run.

8

2. How blkreplay works

2.1. Principle

In some sense, blkreplay is just the opposite of the well-known Linux kernel tool blktrace:
recordings made by blktrace are simply replayed on another block device.
A blktrace record of an IO request contains the following information:

1. timestamp of the IO request (nanosecond resolution)

2. position of the IO request (sector#)

3. length of the IO request (#sectors)

4. direction: R[ead] or W[write]

Notice that blktrace records do not contain any data. Therefore, blkreplay must later gen-
erate some fake data in order to repeat the timely and positionly behaviour of the original
recording. By default, NULL blocks enriched with some internal header information are gen-
erated. The internal headers may be used for verification of the correctness of IO semantics,
either by immediate re-read after each write, or in a separate verify pass after the end of an
ordinary blkreplay run.
Notice that these NULL blocks will (together with the internal header information) destroy

any previous content (such as filesystem data) on your block device!
Therefore, never use blkreplay on production systems.

Always use blkreplay in the laboratory, always on devices which don’t contain any
valuable data!

Running blkreplay in parallel to mounted filesystems on the same device1 will
certainly destroy your data and almost certainly crash your kernel. Always run at
most a single blkreplay instance on a single device!

In general, blkreplay is a tool only for experienced technicians who know what they
do. They should be at least at a senior level.

2.2. Architecture of blkreplay

The main challenge for blkreplay is to generate sufficient IO parallelism.
Ordinary production systems like web servers are serving many thousands of HTTP requests

per second, which may lead to an IO parallelism at the block level of several hundred outstanding
IO requests at the same time.
In order to simulate such a behaviour in the lab, there are principally two alternatives:

1. use the aio interface of the kernel to fire off a large number of IO requests in parallel.

2. use a sufficiently large number of kernel threads or processes in parallel, where each of
them fires up only at most one IO request at the same time (blocking IO).

1Although a single Linux kernel instance tries to probihit such a disaster, there are cases where you can
“achieve” that effect. Examples are iSCSI connections to the same iSCSI target in parallel.

9

2. How blkreplay works

The current version of blkreplay supports only method 2; method 1 is planned for a future
release.
Method 2 is motivated by a typical Apache behaviour: it is almost a “fork bomb”, in particular

under high connection rates and slow block devices. A high number of ordinary Unix processes
is doing conventional read() / write() operations in parallel.
For easy portability even to historic Unix flavours, blkreplay uses ordinary Unix processes

generated by simple fork()s and communicating via anonymous pipes, in favour to a shared-
memory pthreads model. However, future versions may also support pthreads.

/tmp/verify_table

/tmp/completion_table

stdoutstdin

Worker 0 Worker 1 Worker 999

Main Process

blkreplay(format: *.load) (format: *.replay)

/dev/dm−7

2.3. Mode of Operation

It is essential that you understand the concepts described in this chapter. Other-
wise you may produce useless fake results, deviating from valid measurements by
factors, or even orders of magnitude.

It is crucial to understand the operating environment where blkreplay is running. Please take
a look at the following picture:

Live System (productive)

VM (DomU)

Block Layer

Block Layer Dom0

Storage

A B

Driver / Storage Network

Application

VM (DomU)

Filesystem

Block Layer

Block Layer Dom0

Driver / Storage Network

Storage

Page/Buffer Cache Page/Buffer Cache
1 : 100 1 : 1

H
y
p

e
rv

is
o

r

Test in Laboratory

H
y
p

e
rv

is
o

r blktrace

blkreplay

(blktrace)

Application

Filesystem

In the live system, blktrace will “listen” to the events occurring at point A, and will record
them. In this example, we have a complex system, running virtual machines inside a hypervisor.
Notice that all IO requests of the application will not only go through the filesystem, but

also through the buffer / page cache. The in-memory cache will usually serve most IO requests
from the application, without causing physical IO at the block layer (so-called “cache hits”).
On some well-tuned production servers, it is no problem to achieve cache hit rates of 99% or

more, leading to a kind of “gear ratio” of 1:100, or even 1:1000 (in long-term runs). Of course,
there also exist heavy workloads running on thin servers, where sometimes less than 1:10 can
be achieved. Even in that case, there will be always some cache hits, for example caused by
metadata requests from the filesystem. In practice, the cache hit rate will never go down to
0%. Notice that these inevitable cache effects are already included in any blktrace!

10

2.4. Overlapping of IO Requests

Now look at the situation in the laboratory. The application and the filesystem is no longer
present, but its effects are simulated by blkreplay. Due to the architecture of the Linux kernel,
all IO requests will continue to run through the buffer cache2.
It should be clear by the very nature of our experiment, that at measuring point B exactly

the same events should happen as had been formerly observed / recorded at point A.
Thus, the page / buffer cache of the laboratory system must be switched off. Otherwise, a

“gear ratio” of 1:10 (or let it be only 1:1.1) would lead to distortions of the measurement results.
In order to switch off the page / buffer cache, blkreplay uses O_DIRECT mode as offered by
the Linux kernel.
Notice that even by these measures, there may remain some subtle differences between the

operations occurring at point A and point B. The block layer of the Linux kernel does some
optimizations, for example it tries to coalesce adjacent requests, or to split some requests,
depending on the capabilities of the hardware. Usually, these are minor modifications, occurring
at less than 1% of all requests. However, keep in mind (and check) these effects.

The elevator strategy (aka IO scheduler) of the Linux block layer is a bigger
influence factor. It can reorder requests, and it can even add artificial latencies. For
example, CFQ adds some speculative latencies in some cases to increase the chances
for request mergers. Selecting the “wrong3” scheduler may lead to larger distortions,
even to seemingly “bad” behaviour (which is not the fault of bad hardware). In order
to really get (almost) the same behaviour at points A and B, you must select the
NOOP or at least the DEADLINE scheduler. See /sys/dev/block/*/queue/scheduler.

2.4. Overlapping of IO Requests
In general, there are two kinds of overlapping between IO requests in real production systems
(at the time when a blktrace record is made):

1. timely

2. positionly

Both kinds form a two-dimensional space:

overlapping timely yes timely no
positionly yes - √

positionly no √ √

Pure timely overlapping (without positionly overlapping) is a frequent case in almost any IO
system (usually called “IO parallelism” in folklore). In opposite, purely positionly overlapping
(without timely overlapping) is also a frequent case, for example when the same sector is re-read
after a while, or re-written when the contents of a file changes frequently. Completely unrelated
requests (neither timely nor positionly overlapping) are probably the most frequent case in most
practical load scenarios at production sites. There is no problem with any of them, indicated
by the checkmarks.
However, what about both kinds of overlapping at the same time?
The case of both timely and positionly overlapping (simultanously) of IO operations is called

damaged IO.
In ordinary OS kernels, damaged IO usually never occurs. Here are the reasons:
IO requests are usually generated by in-kernel memory caches like buffer caches or page

caches. Even in case of databases using Direct IO when submitting requests to the block layer,
2Several commercial Unices used a concept called “raw device” which circumvented their buffer cache. In
contrast, the internal structures of Linux device driver are internally interwoven with the page cache in a
rather sticky way. Instead of “raw devices”, Linux uses the concept of “direct IO”, which tries to minimize
any caching effects.

3Many sources from the internet claim that CFQ is the “best” IO scheduler. While this is often true for typical
workstation load pattern (and interactive user expectations), our experience at 1&1 is different with regards
to server loads. Check yourself! Run some blkreplay comparisons between different IO schedulers. Hint:
there may be even non-linear dependencies from the lower level, whether you have some RAID with BBU
cache, or not.

11

2. How blkreplay works

their internal database buffer cache works similarly to in-kernel caches. It simply makes no
sense to write to the same sector twice at the same time, because the result will be undefined.
A similar argument holds for reads in parallel to writes to/from the same sector.
In theory, concurrent reads from the same sector would be possible without causing harm to

data integrity on the block device. In operating system caches, this would introduce copies of
the same data into the buffer or page cache, violating its internal uniqueness properties stating
that any sector is cached at most once. Consequently, this case also never appears in practice
at real-life systems(!).
However, in terms of correctness of storage semantics the case of damaged IO involving

read/read to the same sector is allowed. Probably you already know the following table from
database textbooks and others:

conflict? read write
read no yes
write yes yes

Some block IO systems like DRBD show some misbehaviour in case of concurrent writes to the
same sector, or in some cases they even fail. Some DRBD versions4 will at least delay further IO
requests for several milliseconds, lowering IO bandwidth or even leading to temporary hangs.
So, damaged IO should be avoided under all circumstances. Failing to do so may result in a

disaster; in general, some IO devices like elder tape drives may even be corrupted as a whole.
While avoidance of damaged IO is automatically guaranteed in real production systems by

the buffer / cache page of the Linux kernel (or other components like database memory buffers),
our tool blkreplay must be designed very carefully not to step into that pitfall.
Why is there a risk that blkreplay could (accidentally) start some damaged IO?
Well, replay of the original timing of requests is not always possible. Even if blkreplay

tries to start IO requests in the same timely pattern as at the original site, a very slow device
(or a heavily overloaded device) may delay an IO operation for a very long time. In overload
scenarios, or in case of iSCSI network hangs, it is possible that some IO requests may take 5
minutes to complete (or even more, or even never complete in case of fatal errors). In such
cases, it is not unlikely that a new write to the same sector is started before the old one has
completed.
In order to avoid damaged IO, blkreplay uses some in-memory hash tables to detect any

(potential) conflicts between IO requests.
In order to deal with (potential) problems caused by damaged IO, we use the following options

in blkreplay to control its behaviour at replay time:

--strong=0 For the sake of conflict detection, only write/write conflicts will count. This mode
ensures that the “storage semantics” is obeyed with respect to the written data5, but
it allows reads to permute with writes (which is “wrong” in strong sense, hence the
name). In essence, the following conflict table is used internally for conflict detection:

conflict? read write
read no no
write no yes

--strong=1 (default) Use the standard conflict table as known from the literature. Only
read/read is treated as non-conflicting:

conflict? read write
read no yes
write yes yes

--strong=2 All damaged IO is treated as conflicting, even read/read. This may be useful for
simulating the behaviour of real OS caches. This is equivalent to the following table:

4At present, this seems to be an undocumented behaviour observed by the author. Even if DRBD’s behaviour
may change in the future: damaged IO is a bad idea by itself. It would be unfair to blame DRBD for
“psychologically unexpected” behaviour under illegal load patterns, which should never occur. In general,
making code rubust against damaged IO could decrease performance during ordinary operation. Thus
damaged IO should be avoided at its source.

5This allows to check the end result via verify modes for correctness.

12

2.4. Overlapping of IO Requests

conflict? read write
read yes yes
write yes yes

Indepently from the correctness criterion, the following operation modes may be selected. They
determine the kind of reaction in case of detected conflicts:

--with-conflicts No countermeasures against damaged IO are taken. Consequently, is does
not matter which --strong= mode you have selected before.

--with-drop Whenever a new request is conflicting with an old (already issued) request, it is
simply dropped. This has no side effects, other than that some reads and/or writes
may be missing (depending on --strong= mode). This has the lowest overhead of
all conflict-avoiding methods. Depending on properties of the load, the number of
dropped requests may be rather high. Please check the tail of the result file. In the
statistics section, you will find the number of dropped requests. If that number is
higher than, say, 5%, you should consider one of the following options.

--with-partial (default) Any conflicting requests (as determined by --strong=) are pushed
back to an internal pushback list and kept there until the conflict is gone. Pushed
back requests are immediately submitted as soon as the conflict has gone away. This
results in a reordering of the affected requests, while trying to replay unaffected ones
at original timestamps. This leads to a partial ordering of requests, which may be
very different from the original ordering, and thus may “violate” the “original storage
semantics” if it would make a difference on the replay system.
This mode leads to a 2-class society, where ordinary requests are processed faster
than conflicting ones. Further details may be found in section 5.2.1.
Attention! as a side effect, this mode may increase the actual IO parallelism to a
larger number than configured via the --threads= parameter, because some request
slots (and in turn, also some threads) must6 be reserved in advance for pushed-back
requests. When conflicts are gone and the system tries to “catch up”, additional IO
requests may be submitted.
In practice, this can happen in particular with some Windows loads, where a lot of
writes seem to be repeated. Frequently, pushed back requests (colored differently for
better distinction from ordinary requests) are the main contributors to delays. Check
them!

--with-ordering The main process spreads its IO requests to the worker processes in a round-
robin fashion over their anonymous pipes. Whenever conflicting requests (as deter-
mined by --strong=) are detected, this spreading process will stop until the conflict
has gone away. In consequence, the original ordering of requests will be preserved as
much as possible. As a side effect, all following IO requests are also delayed, even if
they don’t conflict with anything else. This can lead to artificial delays.
In general, this mode is the “most robust” one.

In many cases, you will prefer --with-partial, which is the default. It delivers almost the same
throughput as --with-conflicts without the downsides of --with-drop, while minimizing
artificial delays7.
However, --with-ordering is also useful in many scenarios. Practical experience from many

hardware tests shows that the artificial delays caused by --with-ordering seem to be an
advantage. Whenever such stalls occur more than seldomly, they act as an indicator for
massive IO problems of the test candidate. --with-ordering is often a kind of “detector” for
hardware problems, since it visualizes any problems in an eye-catching way.
6Otherwise a reactivated request from the pushback list could have to wait for an ordinary request slot to
become free, which would result in an artificial delay. Experiments have show that such kinds of distortions
can be serious.

7In extreme cases, pushed-back requests (visualized in stronger colors) can form some kind of “transitive
queues”, e.g. when pushback requests depend on other pushback requests transitively. In such a case, their
delays can sum up over a longer time, independently from “normal” requests (clearly visible in the delay
diagram). Although this is often a property of the load, you can try(!) to minimize such an effect by setting
the expert option ahead_limit to values lower than 1s (however too low values will destroy throughput at
all). Dangerous!

13

2. How blkreplay works

When you start a lot of threads (typically ≥ 256), --with-ordering may yield
better(!) throughput than --with-partial. In such cases, the reason is counter-
intuitive, as explained in section 5.2.2: artificial delays caused by --with-ordering
will decrease the average request queue length actually occuring at runtime, which
will in turn increase the average throughput, depending on counter-intuitive prop-
erties of your test candidate. A way to find out is just to run the same benchmarks
with --threads=16 or --threads=32. In case --with-partial is now better than
--with-ordering, you likely detected that problem. Don’t draw wrong conclusions
from such counter-intuitive effects!

2.5. Verification of Storage Semantics
In order to allow verification of the sector headers and their timestamps / version stamps,
blkreplay needs some temporary storage where information can be kept for a longer time than
just during IO. Two temporary files are used: /tmp/verify_table and /tmp/completion_
table. Both are sparse files, containing a simple (sparse) array of sequence numbers, indexed
by the position (sector#). Whenever a write is started, a new sequence number is recorded
in /tmp/verify_table. Whenever that write is completed, the same number is recorded in
/tmp/completion_table. At any time, both tables keep track of the current progress of write
operations.
Whenever the sequence numbers at the same position (sector#) are different between both

files, we know that a write operation has not yet completed. If they are the same, we know
which sequence number should appear in the header of the corresponding sector.
There are following variants of verification modes:

--with-verify Whenever a sector is read (by a regular read request) which has been written
before (by an ordinary write request), the read data is checked against the sequence
numbers from the tables. Any mismatches are reported by the string VERIFY ERROR
in the result file. Thus, zgrep “VERIFY ERROR” *.replay.gz will show them to
you. In addition, the statistics section at the end of the output file will contain some
valuable information.
Warning! this mode can only reveal errors in the storage semantics if written blocks
are re-read somewhen. When sectors are just written, but never read, this mode will
not detect anything.

--with-final-verify In addition to --with-verify, a separate pass will be started at the
end of a blkreplay run. All sectors which have been touched before, will be checked.

--with-paranoia In addition, any written sector will be immediately re-read during operation.
This doubles the IO rate and leads to extremely high distortions of measurement
results.

All verify modes will create temporary tables in /tmp/. Although the temporary
files are sparse, they can use up a significant amount of storage (depending on the
load). The additional IOs form a sequential bottleneck, and therefore can slowdown
blkreplay considerably. Please use the verify modes only for validation, but not for
measurements / determining performance!

14

/tmp/verify_table
/tmp/completion_table
/tmp/completion_table
/tmp/verify_table
/tmp/completion_table

3. How to use blkreplay

Running blkreplay naïvely without reading this chapter may easily lead to com-
pletely worthless fake results which would be only useful for production of bull-
shit!

In science, it would be unethical to produce such bullshit willingly or even deliberately.
In industry, usage of such bullshit (even inadvertendly) may easily lead to failed invests up

to millions of Euros / Dollars (depending on the application and the size of your datacenter).
Most of the following advice will also apply to other benchmark tools like iometer.

3.1. How to Avoid Common Pitfalls

Don’t skip this section! Read it completely, even if you are impatient or under time
pressure!

Modern IO subsystems often use some kind of storage virtualization interally. More often
than you can dream of, concepts from storage virtualization are used (interally) in places where
you don’t expect them.
Example: seemingly “simple” SSDs or even some USB sticks(!) show some of the behaviours

described next.

3.1.1. Pitfalls from Storage Virtualization
The basic idea of storage virtualization is some kind of “translation” (or “mapping”) between
virtual storage addresses and “physical” storage addresses.
In many1 cases, the address translation / mapping is created on the fly, dynamically at run-

time. In the following simplified2 example, the timely order of accesses is marked by increasing
numbers, while the type of IO request is indicated by colors (red = write, blue = read):

1 5 6

1 2 3 4 5

32 4virtual sector addresses:

physical sector addresses: 6

We start with an empty logical address space (often called “logical volume”, shortly LV), having
a logical size of several terabytes. Here, “empty” means that initially no assignment between
logical and physical sector numbers exists. Now we start a short benchmark (whether blkreplay
or others like iometer). When request #1 (a write) arrives, no physical location exists yet.
Therefore, a new location must be assigned. In this example, the locations are always taken
from the beginning of the physical address space.
Thus, all the physical sectors occurring in this example will be allocated in a very small and

compact area at the start of the physical address space. Imagine the drawing not being true
to scale: imagine a total size of several terabytes (> 109 sectors), and a blkreplay benchmark
touching only a few thousands of sectors. What will be the effect?
1A promient exception is classical LVM as implemented by the Linux kernel: unless you use LVM snapshots
or other advanced features, it uses almost static mappings, and it carries almost no observable overhead in
many practical scenarios.

2For simplicity, this example assumes that the address translation uses the same granularity as the benchmark,
e.g. single sectors. We also don’t discuss the internals of the mapping which can also have a drastic impact
on measurement results.

15

3. How to use blkreplay

1. Only a tiny fraction of the physical space will be actually used, usually less than one per
mille or even less than a millionth.
In contrast, real world applications as well as real customers tend to use up significant
space with real data, usually more than 50% (and up to 100%).

2. Even if accesses to the LV are (pseudo-)random, accesses to the “physical hot area” will not
remain random: as you can see, they are translated to (purely / almost) sequential access
patterns. If the physical addresses are residing on a mechanical hard disk, (almost) no
seek operations will occur. Additionally, the physical operations are in ascending order,
which is a classical use case for BBU-cached writes and/or readahead strategies. Notice
that ascending sequential IO on hard disks is usually faster than random IO by a factor
of 100 or even more (depending on hardware and further factors like RAID, between one
and three orders of magnitude).
In contrast, real-world writes will be spreaded much more randomly over the physical
partition, and there will be a significant amount of in-place updates in many practical use
cases.

3. Even worse, read requests need not be mapped at all (indicated by shading in the drawing).
When reading from an address where never anything had been written before, NULL
blocks may be returned on-the-fly, without causing any physical access at all3. Notice that
such “fake reads” can be faster than true read accesses by several orders of magnitude.

4. Even in case read requests are also mapped upon first reference4, perhaps leading to a
physical IO (or perhaps not), the same arguments as for writes apply.

5. If you repeat the same blkreplay benchmark once again, immediately after the first
run, you will get another surprise: this time the mapping between logical and physical
addresses already exists, thus you will likely get different results, usually drastically better,
but seldomly slightly worse, depending on the vendor of the storage virtualization (and
on many other factors such as the size of the logical volume). In scientific terminology:
your experiment is not truly repeatable.

What can you do about that?
There is no general solution for all cases. It depends on the statement you want to prove or

disprove by usage of blkreplay.
The following is just an approximation if you want to reveal the real-life5 behaviour of virtu-

alized storage systems:

1. Whenever you start a new run of a benchmark, you must delete your old LVs, and
create new ones. Otherwise, your old run will influence the new one in some way you
cannot predict easily. Remember that the mapping table in the above example is a kind
of “memory” which records not only the sector numbers occurring in your benchmark,
but even their timely order. Make sure that this kind of “memory” is erased completely6

between any runs!

2. After each fresh creation of a logical volume, fill it with data. This is the only reliable7

3A similar effect is known from holes in traditional Unix sparse files.
4Several commercial storage boxes are known to do so. However, notice that this behaviour is not documented,
and thus not guaranteed by the vendors. They sell you a blackbox. All you can do is to analyze such
behaviour if you are curious about their internals. In their next firmware release, the behaviour may be
already different without notice.

5In real life, customer data or enterprise data is stored on LVs. Thus benchmarks of empty LVs are completely
wrong if you try to reveal real life behaviour.

6Even delete your LVs if you believe that’s unnecessary, because you have obeyed point 2 and have filled it
with data to initialize the mapping: some storage systems make re-assignments of the mapping during your
benchmarks. Because many commercial storage systems are blackboxes, you cannot immediately see that.
Always keep in mind that usually ordinary benchmarks will only touch a tiny fraction of all physical sectors,
compared to real life!

7Some storage vendors have internal functions which preallocate the space for a LV. Don’t use them! Don’t
trust any claims that this would be equivalent to filling with random data - we found cases where we could
disprove such claims, where results differed even by factors. Just fill your LVs with random data to be sure,
even if this delays your measurements for some hours or even days. Keep in mind that later production
systems will take weeks or even months to be filled with data before potential problems could show up, so
don’t hesitate to resemble such kind of effort in the laboratory.

16

3.1. How to Avoid Common Pitfalls

way. Best practice is to use tools like wipe, filling the whole8 LV with random data.
Filling with NULL blocks is not recommended, because some blackbox storage systems
might detect this easily and circumvent it by not creating a mapping at all (or even erasing
an old mapping similar to punch operations).

3. Immediately after filling with random data, start your benchmark exactly once. Never,
really never kill a run of blkreplay (or any other benchmark tool) and restart it. In case
of any error or misbehaviour, you must start over with step 1!

4. There is a single exception if you really know what you are doing: immediately after the
first run, you may restart the same benchmark once again, in order to reveal some hidden
properties of the mapping. You must name your output files differently from the first
run, and you must not confuse the meaning of the second run with the meaning of the
first run.

3.1.2. Pitfalls from Caches

It is easy to be caught by these pitfalls (even if you try to avoid them very hard), since caches
occur very frequently in almost any type of storage system, and even in places where you don’t
expect them. In addition, some real-life loads have hidden properties you cannot see at first
glance.

3.1.2.1. Pitfalls from Cache Operation States

Many people believe that the most important case is cold caches versus hot caches. Although
this is not completely wrong, it is not always fully true. There is another more important
property of cache states: steady state.
Steady state is not the same as hot state. When you start your system freshly, many caches

will be of course empty9. An empty cache is always “cold”. During operation, it will be filled
with data. A cache is called “hot”, if the cache hit rate is “significantly high enough”. What’s
that? All of these terms are rather vague and depend on the application. However, some caches
may never reach “hot” state, for example when the cache design / architecture is “inefficient”
(cf section 3.1.3). What then? The term “hot” is not the right one for describing that problem:
when your cache never gets hots, your testing candidate will just fail your performance test,
but your test as such will be valid: the result is just telling you that the cache is not tuned well
enough for your application workload.
What is “steady state”?
Intuitively, it just means that “nothing changes (fundamentally) any more”. In practice, there

is a simple rule of thumb: your benchmark should just run long enough to get into steady
state. In section 3.1.3, some theoretical methods are described how to compute the time δ until
steady state is reached. In practice, just make a few experiments in order to determine steady
state intuitively. Many people will get a good feeling for “steady state” after some experience.
Once you know when you have reached the “golden” steady state, you can do one of two

things:

1. ignore all benchmark results from the time span before steady state has been reached.

2. let the whole benchmark run at least 10x as long as the time to reach steady state. The
longer, the better.

3.1.2.2. Pitfalls from Cache Size

The following illustration explains a general problem of cache hierarchies. Our example demon-
strates an ill-designed behaviour: the lower cache is smaller than the upper one.
8If you are consciously concerned that filling the whole LV might not catch your usecase where (say) only 50%
of logical space is actually used, you could try to fill only 50% of the LV. However, be sure to fill any blocks
which occur in the benchmarks. Otherwise, the effects described above will almost certainly lead to a higher
distortion of your results than just filling with 100%. Notice that some of the above effects deal with orders
of magnitude, not just a few percent.

9There are some exceptions: SSD caches may start in a hot state (caused by your previous benchmark run),
and BBU caches at RAID controllers may also survive even power failure.

17

3. How to use blkreplay

1 42 3 999

1 2 3 4 99

Upper cache:

Lower cache:

Workload

Lower−lever Parts of Storage System

Now assume that the LV has a size of several terabytes, and the workload is operating on a
large part of that. On one hand, this is several orders of magnitude larger than the upper cache,
but on the other hand typical application workloads will not access all sectors with the same
uniform probability. In general, caches are only useful in two cases (non-exclusively):

1. the cache is strictly larger than the workload.

2. the workload contains unevenly distributed access frequencies.

Case 1 occurs only in special cases, such as in-memory databases (or workstation loads on large
RAM machines). Case 2 appears more often.
Back to the above example: assume that only case 2 applies to the upper cache. Consequently,

case 2 will also apply to the lower cache, because the lower cache is strictly smaller than the
upper cache in this ill-designed example. Now assume we have an inclusive10 cache hierarchy,
and are using a standard cache eviction strategy like LRU. As a consequence from LRU (or
any other strategy avoiding anomalies11), any sector present in the lower cache will be also
be present in the upper cache12. As a further consequence, we see that the lower cache is
superfluous: by removing it, the system could even become faster13 due to less overhead.
What can we do about that?
Simply, just design your system in such a way that lower caches are always strictly larger

than higher ones, by a factor of k. In order to be useful, k ≥ 2 should be used, but for really
good performance k ≥ 10 should be selected.
Probably you already know this, and you think you don’t violate it. However, it is possible

you might violate it unwillingly. The standard case is a server from a data center, equipped
with several gigabytes of RAM. Almost all of the main memory can be used by the buffer/page
caches of the Linux kernel. Therefore, you already may have a rather large upper cache you
didn’t think about. As a consequence, caches at the block storage level (e.g. SSD caches etc)
should be larger by an order of magnitude (in this case ∼ 1TB or more). At the time of writing
this paper, some commercial storage systems don’t match this seemingly simple requirement.
There is another variant of this pitfall: records made by blktrace are measuring the IO

traffic below the buffer/page cache in most cases. Therefore, most (if not all) natural loads
obtained by blktrace contain effects14 of the caches of the original system. In some cases (e.g.
published loads from the blktrace project), you don’t know the original RAM size. Even if
you know, you often cannot tell how large the page cache really was at the time of recording:
how much RAM was spent for other purposes like processes, how much for other filesystems /
partitions?
Even if you knew all that: do you know the workingset size of your application workload?

Read on. . .

10In case of exclusive cache hierarchies, the whole picture can be approximately(!) replaced by a simplified one
having only one cache level. The size of the new simplified cache is just the sum of the sizes of both original
caches.

11Probably the best known anomaly is the famous FIFO anomaly, as explained in most text books about
operating systems.

12This is just the definition of non-anomaly behaviour.
13Notice that there are exceptions. For example, internal memory caches present at hard disk drives are way

too small to be able to contribute to classical hierarchical caching, but they can act as cylinder buffers for
local aggregation strategies like readahead.

14One of the more well-known effects of caches is called cache inversion. At the time of writing this paper,
Wikipedia didn’t carry much about it. Consult a really good textbook or some research papers to learn more
about it.

18

3.1. How to Avoid Common Pitfalls

3.1.3. Pitfalls from Workingset Sizes
The workingset theory has been developped by Denning in the late 1960s, and has been orig-
inally used for the description of the behaviour of hardware-MMU-based paging / swapping
systems and their strategies like LRU. It is also useful in other areas, such as block storage.
Here is an adaptation of Denning’s theory to our needs:

WS(t, δ) =
{
set of all sectors touched in the time interval [t-δ,t]

}
Usually, δ is treated as a constant, called window size. Then the workingset WS(t, δ) at some
point in time t is simply the set of sectors occurring in a blktrace during a time window of
δ seconds before15 the interesting point in time t. Notice that we have a set here: it makes
no difference how often a particular sector occurs during the time window δ, it just matters
whether that sector appears or not. Also, it makes no difference whether a particular sector is
read or written (or both). Thus the workingset model is a reduction of the reality to a handy
theoretical model, but a model which is known to preserve some relevant and very interesting
properties of the reality.

Example: for any two window sizes δ1 < δ2, the condition WS(t, δ1) ≤ WS(t, δ2) holds at
any point in time t. In other words: increasing the window size δ will never make the
workingset smaller; the workingset can only grow if the window becomes larger.

The efficiency of block storage caches can be predicted by the workingset theory in a rather
easy and intuitive way. We assume that accesses to the cache are much faster than accesses to
the background storage, such that we can neglect the access times to the cache when compared
to accesses to the background storage. Then we can model the following interesting property:

A cache is called to be designed efficiently, iff at any point in time t the following
condition holds:
|WS(t, δ)| ≤ |cachesize| for some δ ≥ (time to fill the cache once).

The potential painpoint is easy to see: just take δ as the time to fill the cache from the
background storage, which is (accesstime to storage) ? (cachesize). If there would exist a point
in time t where the workingset WS(t, δ) would be larger than could be transferred to/from the
storage during that same time window δ, the data transfers could become a bottleneck of the
system. Vice versa: if the workingset during window δ would always fit into the cache, the
cache will usually16 speed up things.
Consequences:

• The workingset behaviour of the application is crucial for any storage system.

• The above argumentation contains an oversimplification: of course, accesses to the cache
are not “indefinitly fast” as our above neglect assumed. Therefore, don’t take the above
inequalities as verbatim inequalities. Multiply some factor onto them. In practice, if
you really want blastingly fast caches, make sure your cache is at least one order of
magnitude larger than the workingset size of your application.

In order to do that, you would need the know the workingset size of your application. Please
keep in mind that this is not the same as the workingset size measured by blktrace:

Filesystem

blktrace

Application

Buffer / Page Cache

Block Layer

"true" workingset behaviour

15Notice: Dennings original theory used the time interval [t, t+δ].We find our definition more handy for practical
purposes, because we need no “lookahead” into the “future”.

16Of course, this holds only if the workload contains some repetitions during the window δ, and if the cache
employs some “good” replacement strategy like LRU. The latter assures that “hot” pages from the workingset
will be kept in the cache. In addition, keep in mind that neglecting the access times to the cache could be
an oversimplification in many cases.

19

3. How to use blkreplay

As you can see, the measuring point of blktrace sits below the buffer / page cache, there-
fore it does not directly measure the application behaviour (in addition to influences from the
filesystem, like metadata updates etc). In practice, blktrace measurements may differ from
the “real” application workload of stateless webserver designs by several orders of magnitude.
However, all modern OSes employ caches. Even if we were able to measure the true appli-
cation workingset in some way, it would not be relevant for block storage systems, because it
would be impractical to operate those systems without caches. We need the above picture for
understanding the fundamental properties of blktrace measurements, and for determining the
window size δ. If that is not possible, try to estimate it. As a very rough estimation, take δ as
several minutes.
The blkreplay suite comes with a small tool to visualize the workingset behaviour as mea-

sured by blktrace, which is currently the best approximation of the workingset behaviour of
the application we can easily get access to. Following is an example, showing different window
sizes δ in the same picture (where 000 means cumulation to ∞):

Spend some time on it! Your replay needs to last vastly longer than the δold needed
to descibe the steady state of the original buffer/page cache, as well as the δnew to
describe the steady state of your replay system. Otherwise, you can get fake results
which differ from real practical performance by factors, or even orders of magnitude.
As a rough rule of thumb, any replay of natural loads should take at least one hour.
Better, make a few measurements lasting 8 hours, or even 24 hours, and check whether
the results differ more than expected (besides natural variations).

3.1.4. Pitfalls from Replay Device Sizes and Others
There is a simple intuitive rule: your replay device for blkreplay should have (almost) the
same size as the original device where blktrace has taken its measurement from17.
For easy checking, our output graphics will display the so-called wraparound_factor in

the lower right corner: it shows the ratio between the max block# occuring in the load, and
the size of the replay device. Ideally, it should be near 1.0. When it deviates from this by more
than a factor of two (or less than one halve), it is printed in purple color to warn you.
17If you don’t know this, just make a test run with blkreplay and check the output file. At the end, you will

find a human-readable statistics showing the highest original block number occurring in the replay, as well
as some other interesting numbers.

20

3.1. How to Avoid Common Pitfalls

Some people don’t take this seriously, and some don’t even believe that this can have a
tremendous effect.
Practical experience at 1&1 tells that the above rule is valid, and that results will almost

certainly vary. The bias can be considerable.
Example: the original blktrace recording was taken from a production server equipped with

20 TB RAID. Since in the lab we had only a smaller system with 4 TB, blktrace measurements
were run despite the smaller size. Whenever blkreplay tries to start an IO request outside the
LV size, it just remaps the sector number modulo the (new) LV size. Therefore, results appear
to be valid, since you cannot see any “big” holes or anomalies. You will find out the difference
only if you compare to the correct setup. When repeating the same measurements with correct
LV sizes of ~20 TB, there is a significant difference.
Some people think that such differences can be attributed solely to the natural differences

in spindle count18, and therefore it would not hurt if different models of hard disks were used.
Although there are some effects by spindle count, that opinion is wrong. In order to disprove
such a “theory”, just build two different RAIDs with same spindle count, but fundamentally19

different disk drive models (resulting in different total capacity), and compare (under otherwise
equal conditions).
In short, any of the following factors can influence the performance, independently from each

other (and in no particular order):

• Total capacity, just by itself. If you don’t believe it, just create LVs with 1/10 size of the
physical storage and compare (on the same hardware) with results from the full physical
storage size. Of course, the original recording must stem from sufficiently large devices,
otherwise your “disproof” will be false.

• Model/class of disk drives.

• Number of spindles.

• RAID level.

• Vendor / firmware version of the controller.

• Interconnect technology, such as SATA vs SAS.

• any caches in the hierarchy, such as different BBU cache sizes or different parameters.

... and probably many others.

General rule: never expect any of these effects to be linear. Almost always, they are
non-linear20. Anyone claiming something else must prove it!

Consequence: anyone violating the above rule produces invalid results, unless proven the
opposite!

3.1.5. Pitfalls from Parallelism in IO Systems

3.1.5.1. Pitfalls from missing Parallelism

This pitfall is usually trapping less people, because some intuitive sense for the effects of IO
parallelism is more widespread. Even if you are already aware of this pitfall, read on. There
are some subtleties.

18When using the same hard disk model, a 20 TB RAID must contain 5 times as much spindles as an equivalent
4 TB system. It is clear that additional spindles can benefit random IO. But those effects are non-linear!

19Of course, there are a lot of disk drives (in the same “class”) showing only minor differences. A “fundamental”
difference is for example between a cheap SATA disk versus a smaller but faster 15k SAS disk.

20Non-linear effects cannot be combined with each other in a predictable way, at least in general.

21

3. How to use blkreplay

1 2 k

A frequent use case is storage consolidation. Up to k CPU nodes are connected to some “central”
storage via some kind of storage network.
You may want to evaluate such an architecture in advance with help of blkreplay, in order

to avoid failed invests. The blkreplay suite will help you, because its supervisor scripts like
tree-replay.sh are ready to run masses of blkreplay instances in parallel to each other, and
on different nodes.
For obvious reasons, you should determine the optimum consolidation factor k for each given

hardware candidate. If you vary the factor k, you will get at least two effects:

1. With higher k, you need to build up more CPU nodes and more network connections.
Otherwise you will neglect effects from IO parallelism (which don’t scale linearly21), at
multiple places of the picture: at potential bottlenecks at the CPU nodes, at potential
bottlenecks inside your storage network, and at lots of potential bottlenecks in your central
storage system.
For example, it is completely wrong to just double the load on k/2 nodes. Experiences
with some test candidates at 1&1 show that results can differ enormously from results
from single loads, each on k nodes.

2. The total capacity of the central storage will also vary with k. As known from section
3.1.4, this will not only influence results by itself, but in addition by further effects like
spindle count, non-scaling of caches with factor k, and many others.

3.1.5.2. Pitfalls from too high IO Parallelism

You can tune the number of blkreplay threads via the parameter threads=... (see appendix
A). As a side effect, this will also influence the maximum number of outstanding IO requests
which can be “on the fly” in parallel, together with the replay parallelism (number of blkreplay
instances running in parallel on the same physical system).
Many people believe that an increasing number of outstanding IO requests will improve

overall throughput.
However, some devices / drivers / IO schedulers may respond in some counter-productive

way when hammered with too many IO requests in parallel. Sometimes, your throughput can
even collapse to less than 1/10 of the maximum. There are many possible reasons for this
unexpected behaviour.
In most cases, you will notice collapsing effects only during overload situations. During

normal operation, you will not notice anything, because the device can catch up with the IO
demands. There are almost no queues, because the average service time is shorter than the
average request rate.
As soon as the device gets overloaded, the situation will change rapidly. Masses of blkreplay

threads are trying to fire off their requests in time, starting to overlap now because the service
time increases. Suddenly, some queuing will take place, somewhere. In mathematical theory,
the queue lengths could even grow indefinitely whenever the average request rate is higher than
the average service time. In practice, there will be some limits somewhere.
Imagine you are going shopping in a supermarket. When the cashier girl cannot catch up

with the demand from the customers, their shopping trolleys will start to form a queue in front
of her. Now assume the following behaviour: the longer the queue, the slower she will work.
Imagine that! After a while, customer satisfaction will go down to zero, because the queue will
get longer and longer. And the longer, the slower she will work. And so on. There is no escape,
other than stopping to buy anything from there.
21There is no general way to predict the behaviour of an unknown system! Many non-linear effects show some

kind of “binary” behaviour, suddenly collapsing at some point where you didn’t expect it.

22

3.2. Recommended Setup and Usage

A similar behaviour can be observed in some IO systems. Once a queue has formed, there is
almost no escape from a behaviour similar to traffic jam. If you cannot change the system,
your only chance is to reduce load, or even to remove the load at all.
Sometimes it is even hard to trigger such behaviour. A systems appears to run smoothly for

months, but suddenly it collapses.
If you have such a system (or cannot be sure to have one22) and want to simulate its behaviour

in the laboratory, you should be carefully tuning the threads parameter. In reality, the number
of outstanding requests is often limited in some way. For example, a typical workstation load
caused by a single user has often some intrinsically limited IO parallelism, similar to a limited
number of shopping trolleys in the supermarket. On the other hand, some server loads (such
as those caused by Apache) can fork() off a high number of threads.
So it is quite possible to observe some traffic jam behaviour in practice, depending on your

application. It is quite possible that such behaviour is relevant for IT operations, at least for
some applications (but not for all).

Taking any of these non-linear (and sometimes even binary collapsing)
effects not seriously and/or using a wrong number of threads / replay parallelism can
easily lead to invalid results, and in turn to failed invests!

Hint: a frequent case are distributed systems by themselves. They tend to produce queues
at times and in places where you don’t expect them, and they tend to produce avalanche-like
negative effects (self-amplifying), similar to suddenly appearing traffic jams where you cannot
determine one single reason in isolation.

3.2. Recommended Setup and Usage

3.2.1. Planning Phase

Never try to plan a project without deep knowledge of the pitfalls described in section
3.1. In addition, some experience with blkreplay is helpful. In order to gain such
experience, consider a test project just for playing around, and for getting familiar
with the pitfalls.

3.2.1.1. Describe the Scope of Project

Before starting, you should get conscious with yourself. What exactly is the question you want
to answer with help of blkreplay?
Write down the question both as shortly, as well as precisely as possible. Here are some

examples:

• Compare hardware vendor A with B and C for my production workload X.

• Compare hardware vendor A with B and C in general.

• Debug kernel module xxx.

• Compare iSCSI with Fibrechannel for my production workload X.

• . . .

Next, write down a precise description of your intended test environment. Best practice is
to name hardware vendors, models, all components (including intermediate gear like network
switches), and so on.
Last step: describe all the parameters which know of, which could have an influence onto

your test results. Example:

22To find out, we recommend the artifical loads *bursts*.load.gz for creating anal kinds of overload.

23

3. How to use blkreplay

Parameter Varying?

16 GB RAM in storage node no
10GBit vs 1 GBit network speed yes
Cheap 2TB SATA vs expensive 600GB raptor disk (model “tyrannosaurus rex”) yes
RAID-Level ∈ {1, 5, 6} yes
RAID Stripesize ∈ {16, 32, 64, 128}kB yes
.

3.2.1.2. Describe the Setup of your Experiment

In many cases, the parameters described in your table will make up a multi-dimensional problem
space (cartesian product) which is too large to be explored exhaustively. As explained in section
3.1.4, many of them will influence your results non-linearly.
Thus, you will have to consider the following general strategies:

• You may fix some of the parameters to particular values. Although this saves time, you
may miss an opportunity to find an optimal solution.

• You may select some/enough random samples from your multi-dimensional problem space
and try them randomly (Monte Carlo methods).

• Stepwise refinement: explore the multidimensional space by varying exactly one para-
menter at once. This is slow, but you can be sure of the effects caused by this.

3.2.1.3. Select blkreplay Load

Depending on your project, you should consider both artificial and natural loads, but not too
many of them. Usually, more than three loads are impractical for an ambitious project (unless
you want to compare masses of loads on the same reference hardware).
If your project tries to answer a question for some specific workload X, you should just record

that workload if you can do so (see chapter 4).
If you cannot obtain your real workload in advance, you have to select one from the blkreplay

project (or other sources) which comes as close as possible to your (intended) natural workload.
For the sake of static comparison of workloads, cd to a directory containing your *.load.gz

files and issue the following command:

/path/to/graph.sh --static myname.load.gz

This will produce some .png graphics, describing the throughput and workingset behaviour of
your load (cf section 3.1.3).

You need enough space in /tmp/ (or in another $TMPDIR) for temporary interme-
diate files. If your *.load.gz file is very large (several hours or even days), you
may need several gigabytes. Please don’t interrupt graph.sh as it spawns lots of
subprocesses and creates lots of temporary files. Currently, there are no checks for
free space in /tmp/, so running out of space may produce wrong results silently. As
a countermeasure, run watch df /tmp/ in a separate window during your run of
graph.sh.

Hint: some blktrace recordings (but not all) contain some timing information about the
original IO latencies as measured at the original site. Use /path/to/graph.sh --dynamic
myname.load.gz to create some additional graphics about them.

3.2.1.4. Selection of Replay Duration

This is a hairy problem, as already described in section 3.1.3. Often, you cannot run 24h replays
for many hundred times.
If you want to be sure that a particular load will run even under worst-case conditions,

you should definitly select some appropriate time window around load peaks, measured both in
throughput as well as in workingset size.
In addition, you can try the following strategies:

24

3.2. Recommended Setup and Usage

• For explorative phases in your project, such as determining the optimum in your parameter
space, you can try to minimize running times as much as possible. But not too much.
Otherwise you will be caught by the pitfalls described in section 3.1.

• For final verification of your results, you should repeat benchmarks with a longer window
(at least 8h or 24h).

3.2.1.5. Total Project Time

Working with huge parameter spaces is not all you have to consider. Setup of different RAID
levels, re-initialization after changes of stripe sizes, filling LVs with random data, etc, may take
a very long time, in addition to the benchmark themselves. Don’t forget that! Your only chance
are nights and weekends, if you manage to run something unattendedly. But predictions are
sometimes wrong. In addition, something may fail and then needs to be restarted. Calculate
some spare time for that!
If there is a high time pressure in the project timeline, you probably will have to rework some

parts of your project plan.

Planning is crucial! When you find any discrepancies, try to re-think your plan as a
whole, not just some parts of it.

3.2.2. Setup Phase

3.2.2.1. Lab setup

Ensure that all your hard- and software components are ready in the lab and operational.
In addition, you need some workstation (or server) where the blkreplay suite is checked out.

Do the following steps:

• Ensure that gcc, make, gnuplot, and some standard tools like grep / gawk are installed.
If you need multiple machine architectures (such as x86_64 and i386) in parallel, ensure
that gcc can cross-compile via flags -m32 / -m64 and that the appropriate libs are installed.

• git clone https://github.com/schoebel/blkreplay

• cd blkreplay

• ./configure

• make

• Attention! make install is not yet supported. Just leave everything in place. You can
either put /path/to/blkreplay/scripts/ into your $PATH, or call the scripts via hard
path.

Ensure that all your test machines are reachable as root via ssh from your central workplace,
without need for any password prompt. In order to achieve that, you should consider ssh-agent,
in addition so some tweaking of /etc/ssh/ssh_config (and probably /etc/ssh/sshd_config
on each of the target hosts).
On your workstation, you should have enough disk space to store your results. Create a

subdirectory there for your project. Copy /path/to/blkreplay/example-run/default-main.
conf (and possibly other *.conf files) to that new subdirectory, and finally cd to it. For the
rest of your life, you will be working there ;)
You can now either call /path/to/blkreplay/scripts/something .sh as hard paths as

indicated in the following examples, or you may put /path/to/blkreplay/scripts/ into your
$PATH.
Customization of default-main.conf is described in the following.

25

/path/to/blkreplay/scripts/
/etc/ssh/ssh_config
/etc/ssh/sshd_config
/path/to/blkreplay/example-run/default-main.conf
/path/to/blkreplay/example-run/default-main.conf

3. How to use blkreplay

3.2.2.2. Configuration Files

You should edit default-main.conf to reflect the default setup for your project. If you want
to run multiple variants of your default setup, you can do so by creating additional files like
something .conf as well as a subdirectory something / (having the same name without suffix
.conf). When you later start your benchmark, the values from something .conf will override
those from default-main.conf. It is highly recommended to override only one parameter
inside something .conf, otherwise it may become difficult to reveal the real impact of changed
parameters onto your test candidate.
In general, you may override any parameter from default-main.conf, even hostnames, or

input files *.load.gz, or whatever.

3.2.2.3. Meaning of the Config File Parameters

The meaning of the parameters is documented in the following places:

1. Comments inside default-main.conf should provide enough information for experienced
administrators, at least for a quick start, and should guide you through the most basic
steps.

2. The same information is available in appendix A.

3. Last but not least: read the sources, if you are in doubt about anything.

3.2.3. Benchmark Phase

The basic idea is simple: after customization of default-main.conf (and probably other
default-*.conf files when using additional modules), you create a new subdirectory for each
benchmark run.
Whenever you call /path/to/blkreplay/scripts/tree-replay.sh (without parameters),

a whole bundle of benchmarks will be started, one for each leaf 23 subdirectory (starting from
cwd), provided that for each (intermedidate) subdirectory name xxx there exists some xxx .conf
in the current working directory or in one of its parents. In the whole subdirectory structure,
any directory ending with .old, or including the substring ignore, or containg a file skip will
be ignored.

Example: you have created a subdirectory ./short/ as well as two nested subdirectories
./short/model1/ and ./short/model2/. You further have prepared the config
files short.conf, model1.conf and model2.conf, existing in the current working
directory or in some parent directory down the ../ chain. Then exactly two bench-
mark runs will be started, namely in ./short/model1/ and in ./short/model2/.
The benchmark running in ./short/model1/ will include the following *.conf files,
in the following order: default-main.conf, short.conf, and finally model1.conf.
Each of the specialized config files may override any previous setting, but it is highly
recommended to change only one parameter at a time and to use short but expres-
sive names. Notice: the intermediate directory ./short/ is no leaf (since it contains
some subdirectories), therefore no benchmark will be started inside it. Later, you just
need to create ./long/ as well as ./long/model1/ and ./long/model2/ and some
long.conf in order to repeat the same benchmarks with a longer replay_duration
setting.

Hint: using “intuitive” names like short and long bears some danger. A few years later, you will
not remember what they exactly have meant. Looking into *.conf will not help other people,
for example if you publish your benchmark results somewhere. Therefore it may be wise to use
“speaking” names like duration_600, at least if you have more than two variants. On the other
hand, “intuitive” names are better for presentation to some less-deeply involved audience. Take
some time for creating well-designed names for *.conf and your directory hierarchy! Changing
that names later is cumbersome. Better to design your names in advance in a systematic (but
simple) way.

23A leaf has no further subtree inside it.

26

/path/to/blkreplay/scripts/tree-replay.sh

3.2. Recommended Setup and Usage

On large investigation projects, deeply nested structures may be necessary, involving different
loads, different hardware, different hardware setup, etc. Not all of them are currently auto-
mated. You can use the generic module mechanism to extend the default scripts with further
functionality, to push automation further.
However, not all setup tasks can be automated at all. Some of them like forcing physical

RAID degradation must be started by physically removing a disk, which cannot be automated
(other than buying extremely expensive robots). Therefore, you may include some human-
readable dialogs inside your *.conf files (in shell script syntax), or in some new modules you
have written. In any case, it is advisable to write some script code to check some preconditions
(such as RAID status) in order to prevent wrong measurements.
In general, tree-replay.sh will never repeat any benchmark which has already completed

(i.e. there exists an output file *.replay.gz in that leaf directory). This allows an incremental
style of working.

Continued example: normally, you can call tree-replay.sh again, but nothing happens, be-
cause all leaf directories already contain some results. However, then you find a
problem with the results in ./short/model1/, so you want to repeat that bench-
mark without deleting your first (questionable) results. Now you create a subdirec-
tory ./short/model1/try1.old/ and move your results there. As said above, any
directory names ending with .old or containing the substring ignore are ignored,
so the directory ./short/model1/ will continue to count as a leaf (despite its newer
subdirectory, which is just ignored). Since the *.replay.gz files are now missing in
./short/model1/ due to the mv, tree-replay.sh will repeat that single benchmark
there.

Here are some useful hints:

• You may skip any directory by creating a file skip inside it. touch ./short/model1/skip
will disable that directory. Later, you can remove that file in order to fire off that bench-
mark.

• skip files are also working in intermediate directories like ./short/, disabling the whole
subtree in one step.

• Design your *.conf files such that arbitrary combinations are possible (cartesian product).
In contrast, your directory hierarchy need not (and, in many cases, will not) exploit the
full cartesian product.

• You may create a new leaf directory (somewhere in the subtree) even in parallel to an
already running benchmark. Whenever the currently running benchmark has completed,
tree-replay.sh will re-scan the subdirectory structure, find any freshly created leaf
directories, and determine which benchmark to start next. All leaf directory names which
have not yet completed are sorted alphabetically, and the first name according to ASCII
sort order is taken first.

• When 10 or more variants could appear somewhere (even after a while), use leading zeros
in any names like v001, v002 etc to ensure that ASCII sort order is the same as numerical
order.

• Sometimes the ASCII sort order of names like short vs long is boring, because you
want to run the short benchmarks first. As a workaround in larger projects, add some
numerical prefixes like in 01_short vs 09_long (leaving some numerical space such that
you can later add 05_medium). As a side effect, this also improves the ASCII sort order
of your later *.png graphics.

• You can rearrange the order in another way: just create an empty file prio-nnn in a leaf
directory, where nnn is a number denoting a priority class. Priority classes are overriding
the global ASCII sort order. Directories having the lowest priority class are run first,
while directories without any class are run last. Inside of each class, the ASCII sort order
is obeyed.

27

3. How to use blkreplay

• When you design your *.conf files systematically as a cartesian product, in theory it
makes no difference whether you permute some directory components (e.g ./model1/short/
instead of ./short/model1/). However, in practice it influences the ASCII sort order
(taking the full path) and therefore the order in which your benchmarks are run.

• When some benchmark fails, just delete the corresponding output files. On the next cycle,
tree-replay.sh will detect the missing files and just restart that benchmark (possibly
among others).

• xxx .conf files can even reside in some parent directory of the current working direc-
tory. This way, you need not copy your .conf files inside a complex directory hierarchy
(even spanning multiple projects). However, only the xxx .conf files corresponding to
directories reachable from the current working directory will be included. Example: if
you go to a leaf of your subtree and start tree-replay.sh there, no *.conf file other
than default-*.conf will be included. This may produce different results than expected.
Make sure you start your replays always in the same base directory!

It is easy to misconfigure almost anything by accident. Check each step
you make. In particular, run tools like top, xosview, iostat, watch df /tmp/ etc on all(!)
your involved machines in order to get a chance for noticing when anything goes
wrong! Never, really never run tree-replay.sh blindly!

3.2.4. Visualization of Results

You need enough space in /tmp/ (or in another $TMPDIR) for temporary
intermediate files. If your blkreplay run was very long (several hours or even days),
or if your replay had a high degree of parallelism, you may need several gigabytes,
in extreme cases even several hundreds of gigabytes (as well as rather long running
times – please don’t interrupt graph.sh as it spawns lots of subprocesses and creates
lots of temporary files). Currently, there are no checks for free space in /tmp/, so
running out of space may produce wrong results silently. As a countermeasure, run
watch df /tmp/ in a separate window during your run of graph.sh.

If you have enabled the module graph in the config file default-graph.conf, the following steps
will be carried out automatically for you. Alternatively or in addition, the script tree-graph.sh
can be used to (re-)create all *.png graphics in a whole directory hierarchy, analogously to
tree-replay.sh (and even sourcing the same *.conf files in the same way). In case you need
some individual graphics, read on for details.
After a run of tree-replay.sh, cd to one of the subdirectories where your result files

*.replay.gz have been produced. There should be as many *.replay.gz files as there was
replay parallelism (on multiple devices in parallel). Check that. In addition, check that no
errors are inside them, for example by typing:

zgrep ERROR *.replay.gz

If all is right, issue the following command:

/path/to/graph.sh *.replay.gz

This will produce *.png files, which you can inspect with any graphical viewer like eog /
konqueror etc, print via lpr, or even work on with graphical editors like gimp.
All files *.replay.gz will be taken together, to form a single result from contemporary

replays on several devices in parallel. This means: where possible, results from multiple replay
devices will be merged together into a single graphics.

Hint: If you want to view only a single particular device (or zoom into it), just call /path/to/
graph.sh with a single argument.

28

/path/to/graph.sh
/path/to/graph.sh

3.2. Recommended Setup and Usage

As output, multiple kinds of graphics are produced. Each one starts with the same prefix,
but has another suffix. For example, yourname.g01.latency.realtime.png is a graphics file
showing the measured latencies in realtime. The numbering part .g01. etc is for sorting in the
shell, such that the “most interesting24” graphics will come first.
By default, parameters matching *.load.gz will produce graphics containing only static

analyses. When matching *.replay.gz, only dynamic ones are produced. In order additionally
switch on any (or both), just add one of the options --static or --dynamic.
There is one exception: the throughput graphics are produced always, independently from

--static or --dynamic. In the following, the meaning of different suffixes occurring in the
output filenames is described:

.thrp..png
The throughput is displayed on the y axis. There is an overview variant, where the overall
requested throughput is depicted green, while the actual throughput (when running in
dynamic mode) is orange, for comparison. When both are exactly identical (which occurs
for example when you have an extremely fast disk or a very low-demanding load), don’t be
confused when the orange line completely covers the green one (a property of gnuplot).
There are also more detailed variants where the read vs write throughput is distinct.

3.2.4.1. Static Analysis (--static)

.ws_log..png
On the y axis, the workingset size (cf section 3.1.3) is displayed in logarithmic scale.
Multiple window sizes δ are displayed together in one graphics: 001 means δ = 1s, 006
means 6 seconds, 060 means 60 seconds, and 000 means δ = ∞. The latter is nothing
but cumulation of all occurring sector numbers into one set25.

.ws_lin..png
Like ws_log, but the y axis is in linear scale. May be useful for detecting more fine-grained
behaviour in peaks.

.sum_dist..png
On the y axis, the distance between the lowest and the highest sector number occurring in
each workingset window is displayed. As a result, we can see something like a “total seek
distance”, as if a disk elevator strategy would sort all requests inside a workingset window
according to sector numbers, in order to optimize throughput in favour of latency. For
experts, this can reveal some interesting internal property of the workload.

.avg_dist..png
Same as sum_dist, but the average distance is displayed (normalization against the work-
ingset size). This results in something like an idealized “average seek distance” during each
time window.

.rqsize..png
Displays a histogram of the request sizes (#sectors) occurring in the load, in units of
sectors.

.rqpos..png
Displays a histogram of the request position (sector#) occurring in the load, in coarse
units of whole GiB. The coarse units are necessary to avoid too much jitter in the y axis.

.turns..png (both static and dynamic variants)
A turn is a request where the sector number is lower than the sector number of its
predecessor. For a mechanical hard disk, a turn means that it has to “seek backwards”,
which is often more time-consuming than seeking forward. Imagine an old-fashioned
magnetic tape (e.g. DAT), then you will get some feeling for the meaning of a turn.
Turns are an interesting measure for the locality behaviour of the load (or the replay
result). There is no freak that some IO schedulers try to minimize the number of turns
(for example the famous sawtooth strategy). In this graphics, the y axis shows the relative

24For many people; of course, there may be different needs. Feel free to rename your result files as you like.
25The slope of the 000 line is an indicator for the “repetitiveness” of the workload.

29

3. How to use blkreplay

number of turns occurring during a time window of 1 seconds (in percent, related to the
total number of requests occurring during that time window).

3.2.4.2. Dynamic Analysis (--dynamic)

.latency..png
On the y axis, latencies are displayed.

.delay..png
On the y axis, the delays between the intended starting time and the real starting time
are displayed.

.thrp..png
On the y axis, the troughput (IOPS) is displayed.

*.flying.png
The y axis shows the total number of requests which are currently “on the fly”.
Examples: *.latency.flying.png is derived from the latencies, and thus showing the
number of requests currently submitted to the device, while *.delay.flying.png is de-
rived from the delay, showing the number of requests currently waiting in the logical
“delay queue”.

.smooth.
This internal infix indicates that the y axis has been smoothed, in order to be able to see
anything in wildly jiggling data. Example: *.smooth.latency.flying.png.

*.realtime.png
The x axis is ordered according to the real starting timestamps which have actually
occurred during replay, possibly containing any delays. Notice: when multiple concurrent
*.replay.gz have been supplied as an argument, they are merged (since their timestamps
are usually from the same range), similar to the effect of overlay slides.

*.setpoint.png
The x axis is ordered according to the intended request submission time (starting point),
i.e. when the request should have started (ignoring any delays). As before, multiple
*.replay.gz are merged.

*.completed.png
The x axis is ordered by the completion time of the requests. Note that this may differ
from the submission time.

*.points.png
The x axis is ordered by requests, not timestamps. As a result, requests on the x axis are
equidistant, even in case of heavy throughput differences. For *.replay.gz, the order is
the completion order. This graphics is useful as a kind of “looking glass”, to reveal more
details from performance hot spots. Notice: multiple concurrent replays are not merged on
the x axis (as is the case with *.realtime.png, *.setpoint.png and *.completed.png).
Instead, the runs are just concatenated (pasted together sequentially) in the same order
as in the corresponding files.

*.bins.png
The new y axis is now a histogram showing absolute frequency occurring at the former y
axis, while the new x axis now carries the role of the former y axis.
Examples: *.latency.bins.png shows the latencies on the x axis (while the former
*.latency.realtime.png had it on the y axis), while the new y axis now shows the
absolute frequency of that latency (how often that latency occurs, independently from
the former replay timestamps).

*.xy.png
The x axis as well as the y axis are displaying non-timely data. This is useful for visual-
ization of corrolations. The following variants exist:

30

3.3. Human Interpretation of Results

*.latency.xy.png
While latencies are displayed at the y axis, the x axis inidicates the number of flying
requests (request queue length). Thus you can see the corrolation between request
queue length and service time.

*.delay.xy.png
Similarly, but shows the corrolation between request queue length and delays (the
time needed to enter the request queue at all).

*.latency.delay.xy.png
Immediate corrolation between latency and delay.

Hint: the internal data format of *.replay.gz is the same as *.load.gz. Thus you can use
/path/to/graph.sh --static *.replay.gz to additionally create the same static analysis
graphics as described in section 3.2.1.3. In difference to analysis of *.load.gz, this time you
may have selected a different time window, and you may have merged multiple replays together.

3.3. Human Interpretation of Results
Many existing benchmark tools try to deliver a single number as a result, such as x hyper-ops or
x hell-stones. Such numbers cannot describe the reality, which has multiple dimensions and
is much more complex. Sometimes, new dimensions are even discovered to have an influence.
By default, blkreplay does not produce any (single) number, but graphics, showing the

behaviour over time (or in other dimensions). Although some of those graphics like *thrp*
could be used for production of numbers, most of them serve as input to the human brain: the
human “neural network” can be trained to detect hidden properties in your measurement
data, which cannot be (easily) detected by current AI technology.

3.3.1. Sonar Diagrams
The following example shows the replay latencies of a natural load over real time. Note that
the y axis is logarithmic scale (otherwise you would’nt see too much in the lower bands):

Reads are depicted as blue dots, while writes are colored red. In case of --with-partial,
pushed-back requests are displayed additionally26 in purple. Together, they form some kind of
26Notice that the set of purple “pushes” is always a subset of the “writes”. They are only visible because they

are printed later (hiding the previous red dots).

31

3. How to use blkreplay

“clouds”, showing some “density” both in time scale, as well as in the “latency scale”.
It requires some experience to interpret sonar diagrams.

• As you can see, there are two main “bands” optically visible to the human interpretation.
These look similar to “fish swarms” occuring in sonar diagrams; hence the name “sonar
diagram”.

• Most obviously, cache hierarchies can be identified visually, by looking at the “bands”.
In addition, the natural fluctuation of the load can be seen. Even better, it is quite
interesting how the test candidate is responding to the fluctuation, even over time.

• Any differences between read and write behaviour will immediately catch your eye.

• The red “needles” are indications of queueing. In difference to a single “hang” which
would just “fly above” other requests, intermediate latencies from “fellow requests” are
also present, spanning almost the full range from “fast” requests to the queued ones.

• In case of the strongest needle, you can even see a “lash” behind it. There are no “faster”
requests (not even reads) during this lash (i.e. the space below it appears empty - even as
if there were an interruption in the time axis). This is an indication of a global queuing
strategy.

The same latencies are now displayed as a histogram. A histogram is a non-timely survey of
the absolute frequencies occurring in the previous graphics.

You can identify the “bands” a second time by looking at the camel-like “humps”. In addition
to the sonar diagram, you can identify the “hight” and “thickness” of a hump more easily. Some
very small additional humps can also be found, probably an indicator for further caches or
probably for some scheduler timeouts.

3.3.2. Delay Diagrams

As already explained, delays are the difference between the intended/demanded starting time
of an IO requests, and its real starting time. Huge delays are almost always an indication that
the system cannot “catch up” with the application demands. Here is an example:

32

3.3. Human Interpretation of Results

Here are some interpretations:

• You will immediately notice the “runaway tail” after the purple indicator line, which is
just a strong indication that overall throughput is too low.

• Even before, you can see some “needles” with a “lash” behind. Another indication, even
occurring in a section with rather “low” throughput demands.

As before, there is also a histogram variant of delays:

33

3. How to use blkreplay

3.3.3. Throughput Diagrams

In order to compare this with the actual throughput, look at the following picture, where
demanded throughput is colored green, while actually delivered throughput is orange:

*.latency.flying

This picture is a strong indication that single IOPS numbers are not sufficient for really de-
scribing the actual IO throughput behaviour of a system. Our timely plot can tell you a lot
more about the system. More examples can be found in section 5.1.2.

3.3.4. Flying Diagrams

These are useful to inspect the actual request queue length over time. The following graphics
exhibits the typical “jitter” of the queue length during replay of natural loads having a lot of
conflicts, and using --with-ordering:

34

3.3. Human Interpretation of Results

Notice: this is only the view of blkreplay. The physical device may be actually loaded with
less requests in parallel, because intermediate layers (such as drivers, iSCSI, etc) may limit
the IO parallelism. When blkreplay fires off a request, it need not hit the device immediately.
There are a lot of opportunities to be queued for some time in another places.

3.3.5. Corrolation Diagrams
Most of them are for advanced users and experts. They can visualize internal relationships
between interesting quantities, such as observed request queue length versus observed latency:

Rough interpretation: under overload, write requests cannot be started in time, and when they
are started, they will take a long time. Read requests are seemingly behaving better.

35

3. How to use blkreplay

3.4. Advanced Features

3.4.1. Modules

The script tree-replay.sh can be extended by plugins, aka modules. Some modules are
delivered with the blkreplay suite, but you can add your own ones (and you should consider
submitting them to the opensource project blkreplay at github.com if they could be useful
for a broader audience).
Here is a list of already existing modules:

iscsi_target_iet When enabled, your iet iSCSI target will be automatically configured for
you, automatically generating iSCSI IQN names for you. Usually this module is used
in combination with iscsi_initiator.

iscsi_initiator When enabled, your blkreplay runs will automatically act on iSCSI IQN
identifiers instead of on device names, transparently creating iSCSI connections for
you. It can be used standalone, for example to connect to commercial storage boxes.
When combined with module iscsi_target_*, even the IQN name generation will
be automated transparently (in this case you just supply the device names present
at the iscsi_target host).

recreate_lvm You just supply some physical devices (PVs) in $replay_device_list, and this
module will transparently (re-)create an LVM volume group (VG) for you, together
with some configurable number of logical volumes (LVs) inside it, optionally even
with LVM striping.

create_lv Here you can put in your code for re-creating logical volumes on an arbitrary storage
manager. You need this absolutely whenever you are benchmarking virtualized
storage; see section 3.1.1.

scheduler By default (when enabled), the IO scheduler will be set to noop (or another value)
on all relevant target machines.

wipe When enabled, all your devices will be filled with random data before the benchmark
starts. Always use this when benchmarking virtualized storage; see section 3.1.1.

bbu_megaraid When enabled, your LSI megaraid conrollers will be programmed to enable/dis-
able BBU write caching. The tool MegaCli must be installed.

graph By default (when enabled), the script graph.sh will be called automatically for you
at the end of each blkreplay run.

pipe_* When enabled, these filtering modules modify the *.load.gz input at runtime before
it reaches blkreplay. Following pipe filters are available:

pipe_repeat Repeat the same input files forever, or until $replay_duration is
reached. This is useful if your *.load.gz is too short for a longer replay.
However keep in mind that the workingset will not increase, because ex-
actly the same IO operations will be repeated after a while. In order to
circumvent that, combine this module with pipe_slip.

pipe_slip Add some offset to the sector# after a bunch of operations. Use this in
combination with pipe_repeat to produce a “slowly moving” behaviour
of the sector numbers, such that the next cycle will repeat the operations
at a slightly higher position. Details see appendix A.3.2.

pipe_subst Replace R[reads] with W[writes] or vice versa.

pipe_spread Increase the region where the sector numbers will run about (corre-
sponding to the size of a LV) by some factor. Details see appendix A.3.4.

pipe_resize Increase the request size (#sectors) by some factor, or clip it to some
bounds. Details see appendix A.3.5.

pipe_cmd Insert arbitrary shell commands into the input pipeline.

36

3.5. Lowlevel Details and Expert Usage

Detailed documentation of the module parameters can be found in default-*.conf, or in
appendix A.2.
In order to write your own module, just look at the existing ones and take them as a

kind of “template”. Modules are simply /bin/bash code residing in scripts/modules/ and
starting with a number27, followed by an underscore, and finally modulename .sh. Any ex-
isting module is automatically sourced by tree-replay.sh, provided that some config file
default-modulename .conf exists in your working directory (or in any parent directory down
the ../ path).
Modules are sourced only once at the start of tree-replay.sh. Thus they should only define

some shell functions and change some list variables. The shell functions will be called later
for each leaf directory. The names of your functions should obey the following conventions:

modulename _prepare() is called during the preparation phase. Typically, you can set some
variables here, initialize some controllers, setup your network, create some iSCSI
connections, or the like.

modulename _setup() The setup phase starts after all prepare functions of all modules have
been executed. For example, some device setup operations are only possible af-
ter some iSCSI connections have been already established. Therefore, the plugin
methodology offers you a separate phase in order to guarantee some overall order on
operations even from unknown foreign modules.

modulename _run() Typically, you won’t do anything here, because the running phase is usually
the task of the main module. Only in very special cases, you would need to hook
yourself into this phase.

modulename _cleanup() Typically, you will de-configure something here, remove some tempo-
rary files, check your results, create some statistics, etc.

modulename _finish() Typically, network connections etc will be shutdown only here, because
some operations from the cleanup phase could be relying on them being active yet.

For each phase, there exists a variable phasename _list determining the order in which the
functions will be called. In most cases, you will just append your function name to that list.
In some cases, you may want to prepend instead. Look into the existing code of small modules
like graph to get an impression, and read the main() function in the main module.

3.5. Lowlevel Details and Expert Usage
Ordinary users should skip this section.

3.5.1. Internal Overhead
Some new SSDs are promising IO rates of more than 100.000 IOPS when operated over ex-
tremely fast IO channels. When you try to achieve such high rates, you may probably stumble
over several difficulties.
For example, running too much threads / processes on the same file handle or on the same pipe

can lead to serious lock contention in the Linux kernel, limiting overall throughput. Although
some people might argue that blkreplay itself could produce an “artificial” bottleneck, please
keep in mind that you need some real applications which were capable of producing / consuming
such extremely high IO traffic. Real applications usually don’t use AIO, where such problems
occur less frequently. No wonder that benchmark results published on the internet are often
based on AIO, which is far from practice.
Anyway, here is some advice how to deal with extremely high IO traffic. For “normal” IO

rates in the region of a few 10.000, the following is usually not needed. Otherwise, you should
be prepared to look into internals of the kernel, compile your own high-speed custom kernels
with some debugging options switched off / better tuning of schedulers etc, and possibly use
tools like oprofile to check what is really going on.
In order to determine the internal overhead of blkreplay, play around with the following

parameters:
27The number is used to determine the ASCII sort order, and thus the order in which modules are sourced.

37

3. How to use blkreplay

--threads=... (or threads=... as a shell variable in *.conf) The most important setting.
Although counter-intuitive, too high numbers of threads may increase the overall
overhead and thus reduce throughput. Be prepared to degrade this to rather low
numbers in order to really achieve extremely high IO throughput. Usually, no more
than 32 should be used.

--dry-run (or, as a shell variable, dry_run with underscore instead of minus) Omit any read()
and write() operations, but continue to use lseek64() on the file handles. This
way, you can determine the internal overhead in isolation.

--fake-io Additionally omit even lseek64() operations, as well as creation of header data.
Compare results with --dry-run.

--fan-out=... In order to reduce parallelism on pipe() channels, blkreplay spawns internal
distributor threads, forming a tree with limited fan-out degree. Too high numbers
will increase pipe overhead, while too low numbers will increase thread and scheduling
overhead. The optimum may depend on hardware (e.g. NUMA) and kernel version.

--no-dispatcher Omit distributor threads for the answer channels completely. When com-
bined with high numbers of threads, this may increase the kernel overhead to almost
unusable regions. Use this for kernel tuning.

--bottleneck=... Limit the number of flying IO requests. Has a similar effect than --threads,
but is not the same. Can be used for determining internal kernel and even hardware
overheads such as TLB thrashing (e.g. by keeping --bottleneck constant and in-
creasing --threads). Could be useful for kernel and hardware tuning.
Hint: you can even set this to much higher numbers than --threads, in order to
pre-fill the communication pipes with some ahead requests (minimizing the risk of
waiting times). However, when the number is way too high, a coprocess deadlock
could occur (see the literature about coprocesses).

--speedup=... A very dangerous option when used with natural loads. Leads to heavy dis-
tortions of the relationship between timely and positionly behaviour; in essence a
natural load will not remain a natural load any more. For artificial loads, however,
such as *bursts*, it is useful to reach top IOPS regions.

In any case, extremely high IOPS rates are likely to be reached only by running multiple
blkreplay instances in parallel.

38

4. How to use blktrace for Recording of
Natural Loads

The tool blktrace, as well as its friends like blkparse, are described elsewhere. Here are some
additions from a practical viewpoint of IT operations:

• You will need a kernel with compile-time option CONFIG_BLK_DEV_IO_TRACE enabled.
Although many newer Linux distros have it already enabled by default, you may stumble
over elder systems / distributions where it was missing (so you may need to install and/or
recompile a different kernel).

• Please note that some man pages about blktrace contain unclear / misleading infor-
mation about the physical unit of the -b / --buffer-size option, which may lead to
serious problems (including kernel hangups / crashes) if you (accidentally) try to allocate
more kernel memory than physically available, and/or your production server is heavily
loaded. Unless you are recording extremely high-performance loads, the default settings
will succeed; so there will be no risk for IT operations.

• Tracing multiple devices in parallel is possible, but sometimes works differently than
(inconsistently) described in the man, possibly leading to kernel problems (depending on
versions etc). Before recording blocktraces at production sites, we recommend to test it
somewhere in advance.

Please note that you need enough filesystem space for recording, residing on a different partition
than you want to record the IO traffic! Otherwise, your measurements might be distorted.
You should record at least 8 hours of operation; better 24h.
Once blktrace has finished, some files yourname .blktrace.{0..7} (or other numbers, cor-

responding to the number of CPUs) will exist in the current working directory of your production
machine. Please copy all of them to your workstation before proceeding (never risk more than
necessary on production systems).
After copying, issue the following command:

/path/to/blkreplay/scripts/conv_blktrace_to_load.sh yourname

This will produce an output file yourname .load.gz in your working directory. You should
seriously consider renaming it to some_better_name .load.gz.
The result file will contain as much IO requests as the script could find in the blktrace

recording, but it will not contain any original timings (durations of the requests, aka latencies).
The latency column is simply set to 0.0 everywhere.
There is a reason for it. Extracting timing information reliably from a blktrace recording is

difficult. The problem is that each driver / subsystem in den kernel uses different trace action
characters to indicate the start of an IO request (as well as for indicating various intermediate
stages of request processing). Request completion is another event denoted by character ’C’.
Depending on kernel version / driver, the completion events may be even missing at all (some
devices on very old kernels, which nevertheless occur in practice). More seriously, it is a hard
task to determine pairs of events, i.e. determining which completion event belongs to which
submission event. There is no concept of a “request ID” which would allow this easily. You have
to guess matching pairs from their sector numbers / length etc. Guessing may be wrong due
to ambiguities. In general, a completion could sometimes even belong to multiple submission
events. In addition, when you start and/or end your blktrace recording at a heavily loaded
production server (which is just the most interesting case), some pairs will very likely remain
incomplete at the start and at the end.
Even under “normal” circumstances, we found many cases where non-matching events led

to an incomplete *.load.gz result. Therefore we decided to omit timings from our default
conversion script, at least for now1. However, there is another script which tries to guess the
1Please submit any improvements to the author as patches / git pull requests.

39

4. How to use blktrace for Recording of Natural Loads

timings as best as it can:

/path/to/blkreplay/scripts/conv_blktrace_to_load_with_guessed_timing.sh
yourname

The latter script will name its output yourname .guessed.load.gz, which is different from the
former one. There is a reason for it. Please don’t remove the *guessed* infix when renaming
that result file. We found cases where the difference was considerable.

Very often, some single guessed timings are obviously wrong. You can see it at the
sonar diagram.

Please use the *guessed* version only for analysis, such as producing *.latency.flying
or *.smooth.latency.flying from graph.sh --static --dynamic in order to determine the
original IO parallelism and other interesting properties.

Only use the *.load.gz output stemming from conv_blktrace_to_load.sh as input
for blkreplay. Never use *.guessed.load.gz. You may be missing some essential
behaviour which could be crucial for detection of incidents!

When your load contains some interesting effects and could be of broader interest to a larger
community, please contact the author of this paper by Email in order to publish your load
at www.blkreplay.org. In particular, unusual and novel application areas, heavy ordinary
workloads, and recordings of incidents, are of a broader interest.

40

5. Experiences with some Setups and
some Loads

5.1. Overload Tests

Overload tests try to reveal the behaviour of a system under exceptionary conditions, similar
to a worst-case scenario.
Overload tests can (and should) be done with natural loads (such as http://www.blkreplay.

org/loads/natural/1and1/natural-derived/). In addition, it is one of the rare places where
artificial loads can reach some justification.

5.1.1. Overload with Artificial Bursts

The following examples are using the artificial loads from http://www.blkreplay.org/loads/
artificial/random.bursts/, which are rather “anal” ones (see file 00README there). The load
is linearly increasing over time, until the test candidate will “collapse” under the overload.
We use a single blkreplay instance, and compare between an old SATA RAID-6 and a newer

RAID-6 with faster SAS disks (15k RPM). For now, we consistently use --threads=128. All
results can be found in the directory blkreplay.git/example-run/ and subdirs.
Here is the sonar diagram for the SATA system. It should have run 300s, but it actually run

much longer in realtime:

At the beginning, the load is rather low, and the system can catch up. Soon, it reaches a kind
of “maximum throughput” where the latencies go up to about 1 second. You can see on the
realtime x axis that the replay is delayed as a whole. This can be better seen at the delay
diagram:

41

http://www.blkreplay.org/loads/natural/1and1/natural-derived/
http://www.blkreplay.org/loads/natural/1and1/natural-derived/
http://www.blkreplay.org/loads/artificial/random.bursts/
http://www.blkreplay.org/loads/artificial/random.bursts/

5. Experiences with some Setups and some Loads

Here the x axis shows the intended starting time of each request, which is deliberately con-
centrated at whole seconds (with gaps inbetween), a property of of the *bursts* loads. The
“collapsing point” is about 60s, which means that it roughly can deliver 600 random IOPS. This
can be even better seen at the overwiew thrp comparing the actual with the demanded through-
put, as well as the detailed thrp diagram of the actual throughput ordered by completion time
of the requests:

42

5.1. Overload Tests

Now we turn to better hardware: the SAS system uses smaller disks with 15k RPM, and thus
needs more spindles to reach the same capacity. If we would run the same test for 300s (as
in the SATA case), we would not notice any collapsing. Thus we double replay_duration to
600s in order to be able to see the collapsing point. Please take this into account when looking
at the following graphics:

Notice that the system is even able to reproduce the bursting behaviour of the load, much better
than the SATA system. Only at higher request rates, some “blurring clouds” appear on the x
axis, until it finally collapses under too high load. It is amazing to see the “binary” behaviour
at the collapsing point: as soon as the actual throughput rate cannot catch up with the request
rate, the internal queues will suddenly grow up to some internal maximum, and thus lead to

43

5. Experiences with some Setups and some Loads

latencies around 0.1 seconds, which is better than SATA by an order of magnitude. Of course,
the same effect can be observed at the delay diagram and the detailed throughput diagram:

5.1.2. Overload with (Derived) Natural Loads

Overload tests with natural loads are probably the most interesting ones. They can tell you a
lot upon both the test candidate, as well as upon your application.
In many cases, natural loads are varying very much over time. Frequently, the variance in

the IOPS rate can span an order of magnitude, or even more. Typical reasons are cron jobs or
nightly backups on an otherwise (almost) idle server.

44

5.1. Overload Tests

In order to find the peaks in the load, you have to draw blktraces from production servers
for at least 24h. After conversion to *.load.gz, it is rather cumbersome to find the load peaks
by hand in order to get suitable input data for overload tests. Thus, we have developed the
script create_derived_load.sh which will do the following for you:

1. It splits the input file(s) into snippets of equal length in realtime (by default, 5min length
each).

2. It sorts the snippets according to IOPS in reverse order, i.e. the “heaviest” snippet will
come first.

3. It distributes the snippets to a number of output files in a round-robin fashion (while
adjusting the timestamps to the new order).

As a result, the output files will start with the heaviest IOPS load first, and later declining.
This methodology has a number of advantages:

• The overload part is easily accessible at the beginning of each output file (interesting part
first).

• Thanks to the distribution to many output files, higher replay parallelism is possible in
an uncorrolated way.

• In case your test candidate should get overloaded: you can easily see its recovery behaviour
from overload, thanks to the declination of the load over time. Will it recover at all, and
how fast?

The latter is an important property of any enterprise-grade storage system.
Here are some example comparisons between an old SATA system and a newer SAS system,

both equipped with hardware RAID-6, and loaded with a replay parallelism of 4. You can
find the complete results with additional graphics as a tarball at http://www.blkreplay.org/
examples/.

45

http://www.blkreplay.org/examples/
http://www.blkreplay.org/examples/

5. Experiences with some Setups and some Loads

It is interesting to observe the behaviour of the SATA system in contrast to the high-performance
SAS: at first, the real IOPS rate (orange) cannot catch up with the demanded rate (green).
However, when the demanded rate decreases under the green line after some time, the orange
line becomes higher than the green one until the backlog has been worked up. Finally, the
system can (almost) run in sync with the lower demands, and the orange line is hiding the
green one.

The same effects can also be seen in the corresponding delay diagrams, where you can even
notice multiple top lines stemming from overlay of replays in parallel, and even watch their
different fallback points:

46

5.2. Influence of Replay Parameters

5.2. Influence of Replay Parameters

The following examples are run on the rather slow SATA system. By default, we use threads=128
and 4 blkreplay instances, operating in parallel on 4 LVM devices created from the same vol-
ume group. Therefore, the total IO parallelism is 128 ∗ 4 = 512. Exceptions from that are
denoted.

5.2.1. Influence of Request Ordering

We start with the simplest case: mode --with-conflicts fires up all requests without guaran-
teeing any order (besides that requests are never started too early), which may lead to damaged
IO. Here is the sonar diagram as well as the throughput diagram:

47

5. Experiences with some Setups and some Loads

It is clear that the SATA cannot catch up with the high demands here. But why? Is it the
damaged IO?

A first hint is the rather “thick” red “cloud carpet” in the latency diagram near 1s, indicating
some queueing behaviour. Interestingly, this carpet falls a little down at the end, when the
replay parallelism decreases due to different termination of different blkreplay instances.

Now we turn to --with-drop. Surprisingly, there is only a small difference, although damaged
IO is avoided at the cost of some lost requests:

48

5.2. Influence of Replay Parameters

This is a clear indication that damaged IO cannot be the reason for the delays, since it is
avoided by --with-drop.

Now we turn to --with-partial. Most of the time, there is almost the same behaviour as
before. Only the tail is different, because the actual running times are more diverging between
the four blkreplay instances started in parallel:

49

5. Experiences with some Setups and some Loads

The tail may look disturbing to some people. It has a rather low IOPS rate. In case of delays,
blkreplay should try to catch up as fast as possible, shouldn’t it? What the heck is going on
there? Is there a bug in blkreplay?
Examination of *.lv-data3.replay.gz from http://www.blkreplay.org/examples/ tells

us that the real last tail consists almost exclusively of pushed-back requests. In detail, there
are lots of requests depending on each other transitively, reaching over many generations. They
have accumulated over a long time, because --with-partial is defined to do so. The tail is
nothing but catch-up of pushed-back requests which could not be run earlier, in order to obey
the storage semantics. Many of them are mutually hindering each other. The ordinary non-
conflicting requests form a different class than then conflicting ones, leading to a 2-class society
with different chances to be processed (unfairness). Thus one of the both classes finishes earlier
than the other. This is a disadvantage of --with-partial you should know.

50

http://www.blkreplay.org/examples/

5.2. Influence of Replay Parameters

On the other hand, this can be turned into an advantage, because you can use --with-partial
for detection of such a behaviour. Think of the race between Achilles and the turtle. If you
find a much slower turtle, your test candidate has probably some problems with that specific
load, but not necessarily with other loads at the same IOPS level.
Hint: the 2-class society caused by --with-partial is often visible in the delay diagrams.

Check out yourself!
Let us return to the comparion of request ordering modes: more prominent differences can

be found when we turn to --with-ordering. Now the system can catch up in average (but
not in general at load peaks). The sonar diagram shows that the “thick clouds” at about 1s
have fallen down and have become thinner in densitiy:

This rises the question for reasons. Why should --with-ordering be better than --with-partial
or even --with-drop? Full ordering will usually reduce the IO parallelism when compared to

51

5. Experiences with some Setups and some Loads

partial ordering. The full answer is in sections 5.2.2 and 5.2.4, but for now you can take the
small “gaps” on the x axis as a hint that there must be something related to small micro-stalls,
which seem to accelerate overall throughput in some counter-intuitive way. The micro-stalls
are easily explainable by the submission delays caused by --with-ordering , reducing the IO
parallelism in case of conflicts. But why does that accelerate the overall throughput?

Before proceeding, we take a closer look at the micro-stall effect. It is better visible in
*.latency.flying showing the actually achieved IO parallelism during the replay. Here is the
comparison between --with-conflicts, and --with-drop, and --with-partial:

52

5.2. Influence of Replay Parameters

The sum of both reads and writes (olive line) indicates that the RAID controller is filled with
a maximum of 128 ∗ 4 = 512 requests (caused by threads=128 and a replay parallelism of 4)
most of the time, except at the tail.

And now, compare these with --with-ordering:

It is clear that by definition of ordering, some kind of stalls have to be introduced to guarantee
some virtual “strict storage semantics”. It is also clear that these micro-stalls will sometimes
reduce the actual IO parallelism, which is clearly visible in the graphics. However, can these
micro-stalls be made responsible for an increase of overall throughput?

In order to investigate that, we turn to the influence of the threads= parameter.

53

5. Experiences with some Setups and some Loads

5.2.2. Influence of Number of Threads

The following throughput graphics are a direct comparison between 8, 16, 32, 64, 128, 256 and
512 threads on the SATA system using --with-conflicts, which guarantees the best possible
IO parallelism and avoids any non-linear influences from any conflict-handling strategies:

54

5.2. Influence of Replay Parameters

55

5. Experiences with some Setups and some Loads

56

5.2. Influence of Replay Parameters

It is clear that a too low number of threads, such as 8, can hinder overall throughput (even when
in reality the total IO parallelism is 8∗4 = 32 by taking the number of blkreplay instances into
account). It is therefore no wonder that 16 through 64 threads perform better than 8. But, why
is there a counter-productive break-down when increasing the number of threads after that?
The effect is rather strong: 512 threads will decrease throughput almost by a factor of three
when compared to the “best” setting. This is no peanuts! What the hell is going on here?

The answer can only be buried in the internals of the hardware and/or its firmware and/or its
driver. Typically, some systems have problems when filled with too many requests in parallel.
Here, we see a typical non-linear behaviour as explained in section 3.1.4.

Consequences: the threads= parameter can be very important. And its “optimum” can non-
linearly depend from the request ordering parameters. Here, you see a proof for the warnings
posed in section 3.1.4.

Never adjust the threads= parameter to the value delivering the “best” performance
when comparing different systems / vendors. Doing so will be a lie(!) to your audi-
ence! Always use the threads= setting which corresponds to your real application
based on knowledge (by examining the submission IO parallelism at the original
blktrace recording site, e.g. by looking at the *.flying graphics produced from
the original blktrace recording), and not based on any assumptions which could
be faked in any direction! Be responsible and tell your audience why you select a
specific value, and what would happen if you selected a different one! Or, provide a
series of different threads= settings telling the whole story!

5.2.3. Influence of BBU units at RAID controllers

The following comparison is an example for the performace degradation resulting from defective
(or missing) BBU units:

57

5. Experiences with some Setups and some Loads

In essence, the missing BBU will slow down write requests. This can be easily seen when
comparing the sonar diagrams (just look at the colors and where they appear):

58

5.2. Influence of Replay Parameters

More interesting differences can be found in the tarball at http://www.blkreplay.org/examples/.

5.2.4. Influence of Bottlenecks

The expert option --bottleneck=<number> can be used to limit the number of requests sub-
mitted to the worker threads, which is usually higher than the number of threads. In each
individual pipeline connecting the main thread to each worker thread, up to 8 requests may be
queued in advance.
In the following example using --with-conflicts and --threads=128, we also limit the

number of requests by --bottleneck=128, which leads to almost the same effect as the above
discussion regarding --with-ordering:

59

http://www.blkreplay.org/examples/

5. Experiences with some Setups and some Loads

This result is unexpected. In theory, it should not make any difference whether there is 1 request
in between the main thread and a worker, or many. However, in practice it makes a difference:
the communication latencies over the pipelines are avoided when the pipeline remains always
filled with some requests in advance.
When --bottleneck has exactly the same value as --threads, a “logical request” can be

either working in a worker thread, or being processed by the main thread, or underway over
the pipes. It cannot be present at more than one of these places at the same time.
An example, just for demonstration of the principle: Assume that the IO system can catch up

(at least at the beginning), and that the IO latencies are constant. Assume that the communi-
cation latencies are exactly the same constant. What will be the effect? One half of the requests
will always reside in the IO system, but the other half will reside in the pipe communication
infrastructure, in average. Did you get the point?

60

5.2. Influence of Replay Parameters

Now, assume that both the IO latencies as well as the communication latencies are varying
(e.g. due to kernel scheduling etc). Then the queue length might be staggering around, as
observed in the following graphics (first is the default bottleneck setting --bottleneck=$((
threads * 8)), second is --bottleneck=${threads}):

As before, the SATA system shows its counter-productive behaviour when too many IO requests
are fired up in parallel. Once the number of requests has reduced, it works better. But somewhen
it staggers to the other extreme, flipping around. And to the opposite.

Interesting side note: similar behaviour can be observed in real-life production systems, be-
cause natural loads (as opposed to standard benchmark tests) often vary by orders of magnitude.
When spuriously plagued by seemingly “unmotivated” incidents, look for places where non-linear
and counter-productive behaviour may cause unexpected (and possibly self-amplifying) effects!

61

5. Experiences with some Setups and some Loads

5.2.5. Influence of strong Mode

Here is a direct comparison between all three --strong=modes, when combined with --with-partial.
The effect is highly dependable from the load, and usually rather small (when compared to the
drastic effects demonstrated in some of the previous sections). But don’t take this as given!
Better check for it. First, we compare at --threads=128:

62

5.2. Influence of Replay Parameters

The “long tail” explained in section 5.2.1 is disturbing. The 2-class treatment inherent to
--with-partial leads to a high number of transitively pushed-back requests, racing against
the ordinary requests. This race is in some sense “non-deterministic” and may depend non-
linearly from the --strong= mode. Therefore, we reduce the 2-class treatment by turning to
--threads=32:

63

5. Experiences with some Setups and some Loads

Now the tail effect has almost vanished, because the better throughput leads to less queueing,
which in turn decrease the chances for a conflict to actually occur during the time window
--ahead_limit= (default 1 second). In consequence, any self-amplifying “traffic jam effects”
are much lower. As expected, the actual throughput decreases with stronger mode, but the
effect is really tiny, probably below measurement tolerances. In order to really see something,
we take a closer look at the sonar diagrams:

64

5.2. Influence of Replay Parameters

65

5. Experiences with some Setups and some Loads

As expected, the number of Write Pushbacks is increasing with --strong= mode, and Read
Pushbacks come also into play. But the differences are minor. A litte more impressive are
the differences at *.latency.flying, where the “staggering effect” is clearly increasing with
growing --strong= mode:

66

5.2. Influence of Replay Parameters

More details can be explored when looking at the purple “Write Pushes” / deep-blue “Read
Pushes” displayed in further graphics at http://www.blkreplay.org/examples/.

67

http://www.blkreplay.org/examples/

A. Config File Parameters

A.1. Basic Parameters

A.1.1. File user_modules.conf:

example–run/user_modules.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

here you can add your own (local) modules.

user_module_dir ="/ path/to/my/directory"

A.1.2. File default-main.conf:

example–run/default–main.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for standalone tests (without modules)

replay_host_list
##
Whitespace -separated list of hostnames where blkreplay is run in parallel.
Each host must be accessible via ssh , without password prompt.
You may use advanced shell pattern syntax , such as "myhost {17..23}"

replay_host_list="host672␣host {675..679}"

replay_device_list
##
Whitespace -separated list of devices where blkreplay is run in parallel.
You may use advanced shell pattern syntax , such as "/dev/drbd {0..3}"
##
Notice: you will get the CARTESIAN PRODUCT of
replay_host_list x replay_device_list
i.e. all devices must occur on each host.
##
If you need asymmetric combinations , you can omit (comment out)
replay_device_list and instead denote each individual combination
by the special syntax
replay_host_list =" host1:/dev/device1 host2:/dev/device2"
(or similar)

replay_device_list="/dev/dm -{7 ,9}"

68

A.1. Basic Parameters

input_file_list
##
Whitespace -separated list of *.load.gz files.
You may use ordinary shell pattern syntax , such
as "bursts -ultrafine.readwrite .1b.*. load.gz"
or advanced shell pattern syntax ,
like "bursts -ultrafine.readwrite .1b.{1..9}. load.gz" etc.
##
If you provide less input files than needed by the cartesian product
replay_host_list x replay_device_list , the same input files will be
re-used in a round -robin fashion.
##
HINT: you can provide an URL for downloading from the internet (even with

wildcards),
such as "http :// www.blkreplay.org/loads/natural /1and1/misc/statistik .*. load.

gz"
##
WARNING! running many hosts on a single input file may lead to
DISTORTIONS , since all load peaks will occur at the same time ,
and the disk seeks / their distances will be duplicated everywhere
in exactly the same way. As a workaround , see parameter replay_delta below.
##
WARNING! Mixing fundamentally different loads can lead to
unintended results! (if you don ’t know what you are doing)

input_file_list="${base_dir }/example -load/artificial/bursts -ultrafine.readwrite
.1b.1. load.gz"

replay_max_parallelism
##
When set to values > 0, this reduces the parallelism produced by replay_*

_list
to some smaller value.
##
This is handy for comparisons between different degrees of replay parallelism

,
without need for reconfiguring the host / devices list each time.

replay_max_parallelism =0 # means unlimited / only limited by replay_*
_list

output_label
##
All output files are prefixed with this name.
Useful for general description of projects etc.

output_label="MYPROJECT"

output_add_*
##
When set to 1 or 0, the output filename will (or will not) contain the
corresponding information.
Useful for detailed description of your results.
##
WARNING! disabling the hostname / device can lead to name clashes
(mutual overwrites) if you start a replay on multiple hosts
(and/or on multiple devices) in parallel.

output_add_path =1 # the relative path of the leaf directory is added
output_add_host =1 # add hostname where this blkreplay instance is running
output_add_device =1 # add devicename where this blkreplay instance is running
output_add_input =0 # add the input file name

replay_start
##
Starting offset in the input file(s), measured in seconds.
Often this is 0.
Can be used to "zoom into" any "time window" in the input files
(when combined with replay_duration)
##
Notice: this is _uniformly_ for all input files. If you need
indiviual time windows from each input file , just create specialized
input files , e.g. using standard Unix tools like head (1) / tail (1) /

69

A. Config File Parameters

awk(1) / perl / gzip etc.

replay_start =0

replay_duration
##
One of the most important parameters , measured in seconds.
##
Please read the warnings in the documentation about unexpected
effects of storage virtualization layers , caches etc when this
parameter is too short.

replay_duration =3600

replay_delta
##
As said above , replaying the same input file many times in parallel
can lead to unintended distortions. Often , you don ’t have enough
independent input files to achieve high replay parallelism.
As a workaround , you may "move on" the time window by the
distance $replay_delta , i.e. the next host will replay a
"later" portion of the same input file. Although this is worse
than having completely independent / uncorrolated input files ,
this is by far better than "common mode".
##
Warning! please check the length of your input file , whether
(replay_start + replay_duration + n * replay_delta) fits into
the total length. Otherwise , your load will be silently lower
than intended.
##
Hint: when needed , replay_delta should be as high as possible , in
order to avoid repetition of the same parts over and over again.

replay_delta =0

threads
##
Replay parallelism. Must be between 1 and (almost) 65536.
##
Typically , the number of threads is limiting the number of
outstanding IO requests [aka "request queue depth "].
##
Many people believe "the higher , the better ". However ,
beware of hidden overheads (see PDF paper).
##
Higher numbers will not always lead to better throughput:
some devices / drivers / IO schedulers will even slow down when
hammered with too many requests in parallel. Some of these
bottlenecks may vary with the kernel version (see paper).
##
Attention! Never pick this parameter "out of thin air".
##
In order to approximate real life behaviour , you should DEFINITELY
consider the ACTUAL threading behaviour of your application
and try to approximate it!
##
Using a totally different threads= parameter than occurring in
practice / in YOUR accplication can easily lead to high distortions ,
and even to completely worthless FAKE RESULTS!
##
If you have a "fork bomb" like Apache , use a high number of threads.
Typically , a database like mysql has a relatively low number of threads.

threads =512

strong
##
Conflict handling. Determines the STORAGE SEMANTICS. Details see PDF doc.
##
One of following conflict tables is used , depending on this setting:
##
strong =0 :
##

70

A.1. Basic Parameters

conflict? | R | W |
---+---+---+
R | - | - |
W | - | y |
##
strong =1 :
##
conflict? | R | W |
---+---+---+
R | - | y |
W | y | y |
##
strong =2 :
##
conflict? | R | W |
---+---+---+
R | y | y |
W | y | y |
##

strong =1

cmode
##
Shorthand for "conflict mode".
See section about both timely and positionly overlapping
in the PDF paper , aka "damaged IO".
##
Following values are possible:
##
with -conflicts:
No countermeasures against damaged IO are taken.
This can lead to the highest possible throughput , but your device
may behave incorrectly.
##
with -drop:
In case of damaged IO, any conflicting requests are just dropped.
[conflicts are determined by the above strong= parameter]
This will minimize artificial delays , but at the cost of some
distortions from missing requests.
##
with -partial:
In case of damaged IO, the conflicting requests are pushed back
to an internal pushback list and re-activated as soon as possible.
This gives the best possible throughput while avoiding artificial
delays as well as damaged IO.
##
Attention! this may INCREASE the IO parallelism [request queue depth]
because additional request slots must be reserved in advance
(see paper).
##
In addition , this may lead to a 2-class treatment of requests , because
the pushed -back requests have less chances and are queued more
intensively than ordinary requests. If you want to reveal whether your
test candidate already has some internal 2-class treatment , don ’t
use this mode (otherwise you cannot distinguish the reasons easily).
##
with -ordering:
In case of damaged IO, the conflicting requests (as well as
any later requests) will be delayed until the conflict has gone.
##
This can lead to ARTIFICIAL DELAYS , because all following requests
are delayed as well.
##
This mode is useful for detection of massive problems in the hardware.
It is also useful for detection of 2-class request treatment in your
test candidate , because the artificial delays are "fairer" than
with -partial.
##
Since the micro -stalls introduced by this mode are more approximate
to "request queue staggering" occurring in practice , this mode
is also useful for avoidance of some distortions caused by overload.
In some cases , the artificial delays caused by this mode are even

71

A. Config File Parameters

BENEFICIAL!

cmode=with -partial

vmode
##
Shorthand for "verify mode".
##
WARNING! switching on verify can lead to serious performance degradation
(i.e. blkreplay itself may become a bottleneck)
##
During verify mode , some temporary files
/tmp/blkreplay.$$/{verify ,completion}_table
are used to store version information about written data.
##
Depending on the size of the device , this can take considerable space.
Depending on workingset behaviour , accesses to those temporary files
can slow down blkreplay considerably (due to additional IO).
##
Don ’t use verify mode for benchmarks!
Use it only for checking / validation!
##
Following values are possible:
##
no-overhead:
No checks are done. No overhead.
##
with -verify:
Whenver a sector is read which has been written before (some time
ago), the sector header is checked for any violations of the
storage semantics.
##
with -final -verify:
In addition to with -verify , at the end all touched sector are
separately re-read and checked for any mismatches.
##
with -paranoia:
Like with -final -verify , but in addition _all_ written sectors will
be _immediately_ re -read and checked.
This leads to high distortions of measurements results (because it
doubles the IO rates for all writes), but is useful to
check the storage semantics even more thoroughly.

vmode=no -overhead

verbose_script
##
When set to 1, make shell output more speaking.

verbose_script =0

verbose
##
When set to 1, make blkreplay output more speaking.

verbose =0

start_grace
##
Over slow networks , it may take some time until all pipes / buffers
are filled. If the benchmark starts too early , artificial delays
could result (because the "supply chain" is too slow).
##
The real starting time of the benchmark will be after this
(configurable) grace period. Defaults to 15s.
##
You may need this also in case of laptop disks with a long spin -up
time.

#start_grace =15

###

72

A.2. Ordinary Module Parameters

some advanced parameters (experts only)

#replay_out_start =""
#omit_tmp_cleanup =0
#enable_compress_ssh =2

#no_o_direct =0 # extremely dangerous , leads to FAKE results! read the docs!
#o_sync =0 # leads to distortions
#speedup =1.0 # leads to heavy distortions of NATURAL loads
#dry_run =0
#fake_io =0
#ahead_limit =1.000000000
#simulate_io =0.001000000
#fan_out =8
#no_dispatcher =0
#bottleneck =0

A.2. Ordinary Module Parameters
The following list is in the order of activation.

A.2.1. File default-recreate_lvm.conf

example–run/default–recreate_lvm.conf

#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module recreate_lvm
##
recreate_lvm: transparently (re)create LVM devices from a
set of physical volumes.
##

enable_recreate_lvm
##
Set to 0 or 1. Enable / disable this module.

enable_recreate_lvm =0

vg_name
##
Name of the LVM volume group.
##
All physical devices supplied in $replay_device_list will be
used to create a single volume group out of them , on each host
from $replay_host_list. Only the full cartesian product between
$replay_host_list and $replay_device_list is supported.
##
WARNING! any pre -existing logical volumes (LVs) in that
volume group (VG) will be destroyed , and their data will be lost!
Their old physical volumes (PVs) are also removed and destroyed!
##
After creation of the LVs , $replay_device_list will be re -written
to reflect the list of LVs thereafter.
##
This means: you just supply the physical devices , the number of LVs
to create , and the size of each.
The names of the LVs are then created and maintained automatically for you.
This can be even combined with the iSCSI modules etc , which will
automatically take the LVs and work on them , instead of on the PVs.

73

A. Config File Parameters

vg_name="vg-test"

lv_count
##
Number of LVs to create.
##
This determines the replay parallelism , when not limited
by $replay_max_parallelism.

lv_count =1

lv_size
##
Size of each logical volume. Syntax see "man lvcreate ".
##
Of course , there must be enough space on the physical volumes :)

lv_size =1T

lvm_striping
##
Set to 0 or 1. Enable / disable LVM striping over multiple
physical volumes.
##
When you have multiple RAID sets , this can _tremendously_ improve
IO performance!

lvm_striping =1

lvm_stripesize
##
For best performace , this should be equal to the RAID stripesize
at physical level.

lvm_stripesize =64

A.2.2. File default-create_lv.conf

example–run/default–create_lv.conf

#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is ,
without any warranty.

###

defaults for module create_lv
##
create_lv: before filling all devices with random data , (re)create your LVs
##
ATTENTION! Always use this module when running benchmarks on
virtualized storage!
##
Read the section about "Pitfalls from Storage Virtualization"
in https :// github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
##
You *MUST* delete and re-create your LVs at every run on commercial
storage boxes as well as other virtualized storage!

enable_create_lv
##
Set to 0 or 1. Enable / disable this module.

enable_create_lv =0

implement the next function such that it can be called twice
(even when no LVs exist any more) without causing errors.

74

A.2. Ordinary Module Parameters

#
However , in case of errors just "return 1" to signal it!

function delete_lv
{

echo "$FUNCNAME␣deleting␣all␣your␣LVs"
ensure that nothing can go wrong any more ...
replay_host_list=""

put in your code here
...

if ((failure)); then
echo "Sorry.␣Some␣devices␣are␣left␣over.␣Remove␣them␣by␣hand!"
return 1

fi

success
return 0

}

this should also signal success by the return code.

function create_lv
{

echo "$FUNCNAME␣creating␣all␣your␣LVs"

put in your code here
...

if ((failure)); then
echo "Sorry.␣Setup␣failed."
return 1

fi

upon success: tell which devices can be used.
replay_host_list="yourhost1 :/dev/device1␣yourhost2 :/dev/device2"
echo "replay_host_list=’$replay_host_list ’"
return 0

}

A.2.3. File default-iscsi_target_iet.conf

example–run/default–iscsi_target_iet.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module iscsi_target_iet
##
Automatic setup of iet (of course , it must be installed)

enable_iscsi_target_iet
##
Set to 0 or 1. Enable / disable this module.

enable_iscsi_target_iet =0

iscsi_target and iscsi_ip
##
Host where iet should be configuered.
##
IMPORTANT!
##
When you also use the module iscsi_initiator (which is often the case),

75

A. Config File Parameters

you will usually configure $iscsi_target and $iscsi_ip _there_ , not here.
##
In order to avoid any mess by doubly overwriting
these variables , they are commented out here.
However , you may override them in your own *.conf files when necessary.

#iscsi_target =" myserver"
#iscsi_ip =""

iqn_base
##
base name for automatic creation of iSCSI IQN identifiers.
##
This module will automatically create IQNs for you , by taking
this variable and appending device names (where slashes are
substituted by underscores).
When combined with module iscsi_initiator , you will not even
have to mess with indidvidual IQN names , since the initiators
will automatically "know" them.

iqn_base="iqn .2000 -01. info.test:test"

replay_host_list and replay_device_list
##
IMPORTANT!
##
These variables are usually configured in the main module , or in
your own *.conf overrides.
##
The MEANING of devices changes , as soon as you enable this module:
Now the device names are referring to devices on the $iscsi_ip server!
##
Don ’t mess that up.
##
BEWARE: cartesian combinations of $replay_host_list with $replay_host_list
will continue to take place.
##
Thus , it is strongly recommended to use the syntax
"hostname:devicename" as documented in default -main.conf
in order to avoid re-using the same device twice (by accident).

A.2.4. File default-iscsi_initiator.conf

example–run/default–iscsi_initiator.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module iscsi_initiator
##
Automatic setup of the linux iSCSI initiator (of course , it must be installed

)

enable_iscsi_initiator
##
Set to 0 or 1. Enable / disable this module.

enable_iscsi_initiator =0

iscsi_target
##
hostname of the iSCSI target you want to connect with.
##
Beware of firewall rules: unless you use $iscsi_ip below ,
this must be accessible from all your

76

A.2. Ordinary Module Parameters

$replay_host_list machines , as well as from your workstation where
tree -replay.sh is running. Setup your ssh correctly , such that
no interactive questions will occur!

iscsi_target="myserver"

iscsi_ip
##
deviating IP or hostname of the iSCSI target in case of a different
eth* interface for an internal storage network.
##
This is only used for internal connections between the initiators
and the target.
##
The syntax ip:portnumber is also supported.
##
When unset , this defaults to $iscsi_target

#iscsi_ip ="10.0.0.1"

replay_host_list and replay_device_list
##
IMPORTANT!
##
These variables are usually configured in the main module , or in
your own *.conf overrides.
##
The MEANING of "devices" changes , as soon as you enable this module:
Now the device names are nothing but IQN names for iSCSI!
##
Don ’t mess that up.
##
BEWARE: cartesian combinations of $replay_host_list with $replay_host_list
will continue to take place.
##
Thus , it is strongly recommended to use the syntax
"hostname:IQN.bla" as documented in default -main.conf
in order to avoid re-using the same IQN specification twice (by accident).
##
When combined with module iscsi_target_*, the meaning of the devices
will change _again_: in this case they will denote devices (not IQNs)
on $iscsi_ip (see also comments in default -iscsi_target_ *.conf).

A.2.5. File default-scheduler.conf

example–run/default–scheduler.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module scheduler
##
automatically set the IO scheduler on all relevant machines.

enable_scheduler
##
Set to 0 or 1. Enable / disable this module.
##
WARNING! disabling this module can result in some "random" behaviour ,
depending on what is (accidentally) preset at your hosts.

enable_scheduler =1

scheduler
##

77

A. Config File Parameters

One of the values "noop", "deadline", "anticipatory", "cfq" etc.
Defaults to "noop".

scheduler="noop"

A.2.6. File default-wipe.conf

example–run/default–wipe.conf

#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module wipe
##
wipe: fill all devices with random data
##
ATTENTION! Always use this module when running benchmarks on
virtualized storage!
##
Read the section about "Pitfalls from Storage Virtualization"
in https :// github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
##
HINT: when combined with iSCSI , this is always run over it.
There are cases (such as XenServer) where some intermediate layers
may introduce some additional storage virtualization.
##
enable_wipe
##
Set to 0 or 1. Enable / disable this module.

enable_wipe =0

no further options

A.2.7. File default-bbu_megaraid.conf

example–run/default–wipe.conf

#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module wipe
##
wipe: fill all devices with random data
##
ATTENTION! Always use this module when running benchmarks on
virtualized storage!
##
Read the section about "Pitfalls from Storage Virtualization"
in https :// github.com/schoebel/blkreplay/raw/master/doc/blkreplay.pdf
##
HINT: when combined with iSCSI , this is always run over it.
There are cases (such as XenServer) where some intermediate layers
may introduce some additional storage virtualization.

78

A.2. Ordinary Module Parameters

##
enable_wipe
##
Set to 0 or 1. Enable / disable this module.

enable_wipe =0

no further options

A.2.8. File default-graph.conf

example–run/default–graph.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module graph
##
graph: automatically call graph.sh whenever results have been created.

enable_graph
##
Set to 0 or 1. Enable / disable this module.

enable_graph =1

graph_options
##
Commandline options for graph.sh. See documentation.

graph_options="--static␣--dynamic"

sequential_mode
##
When set to 1, all the gnuplot commands will run sequentially
instead of in parallel.
##
Recommended for large *. replay.gz file , since gnuplot may
eat tons of memory (swapping).

sequential_mode =1

##
##
The following internal variables may be set to override the default values.
Some of them are gnuplot commands / options. Please consult
the docs for details.

#picturetype ="png" # [ps|jpeg|gif |...]
#pictureoptions =" small size 1200 ,800" # other values: "size 800 ,600" etc
#bad_latency ="5.0" # seconds
#bad_delay ="10.0" # seconds
#bad_ignore ="1" # the n’th exceeding the limit
#ws_list ="000 001 006 060 600" # list of workingset window sizes
#thrp_window =3 # window size for throughput computation
#turn_window =1 # window size for turn computation
#smooth_latency_flying_window =1 # window size for smoothing latency.flying

colors (associative array)
Default colors may be overridden.
Use RGB values like in HTML/CSS

declare -A color

#color[reads]="#00 BFFF" # DeepSkyBlue

79

A. Config File Parameters

#color[writes]="# FF0000" # red
#color[r_push]="#00008B" # DarkBlue
#color[w_push]="# FF1493" # DeepPink
#color[all]="# CDCD00" # yellow3

#color[ok]="#00 EE00" # green2
#color[bad]="# A020F0" # purple
#color[border]="#000000" # black
#color[warn]="# B35200"
#color[fake]="# B35200"

#color[demand]="#00 CD00" # green3
#color[actual]="# FFA500" # orange1

#color [000]="# EE0000" # red2
#color [001]="#228 B22" # ForestGreen
#color [006]="#0000 CD" # MediumBlue
#color [060]="# CD950C" # DarkGoldenrod3

A.3. Pipe Module Parameters

A.3.1. File default-pipe_repeat.conf

example–run/default–pipe_repeat.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_repeat
##
pipe_repeat: repeat contents of the *.load.gz input files until forever.
##
WARNING: always set $replay_duration , otherwise blkreplay will
run forever.

enable_pipe_repeat
##
Set to 0 or 1. Enable / disable this module.

enable_pipe_repeat =0

no further options

A.3.2. File default-pipe_slip.conf

example–run/default–pipe_slip.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_slip
##
pipe_slip: increase the sector numbers after a bunch of operations.

enable_pipe_slip

80

A.3. Pipe Module Parameters

##
Set to 0 or 1. Enable / disable this module.

enable_pipe_slip =0

pipe_slip_every
##
After this number of operations , the offset will be increased.

pipe_slip_every =32768

pipe_slip_increase
##
Increase the offset (sector #) by this number
(every $pipe_slip_every steps).

pipe_slip_increase =256

A.3.3. File default-pipe_subst.conf

example–run/default–pipe_subst.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_subst
##
pipe_subst: substitute reads/writes in *.load.gz input pipe.

enable_pipe_subst
##
Set to 0 or 1. Enable / disable this module.

enable_pipe_subst =0

pipe_subst_from and pipe_subst_to
##
Characters to replace. R = read , W = write.

pipe_subst_from="R"
pipe_subst_to="W"

A.3.4. File default-pipe_spread.conf

example–run/default–pipe_spread.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_spread
##
pipe_spread: increase the region where the sector numbers
are running about.
##
WARNING! this will not increase the workingset behaviour ,
and has almost no effect on SSDs or virtual storage.

81

A. Config File Parameters

However , it _may_ be useful for increasing the average seek distance
at mechanical hard disks. Check the result!

enable_pipe_spread
##
Set to 0 or 1. Enable / disable this module.

enable_pipe_spread =0

pipe_spread_factor
##
How large the "working area" should get.

pipe_spread_factor =2.0

pipe_spread_align
##
Ensure that the result is aligned to these multiples of sectors.
(every $pipe_spread_every steps).

pipe_spread_align =8 # corresponding to 4k MMU size

pipe_spread_offset
##
Additional offset (added to resulting sector #)

pipe_spread_offset =0

A.3.5. File default-pipe_resize.conf

example–run/default–pipe_resize.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_resize
##
pipe_resize: increase the request size (# sectors)
by some factor , and/or tie to some limits.

enable_pipe_resize
##
Set to 0 or 1. Enable / disable this module.

enable_pipe_resize =0

pipe_resize_factor
##
How large the "working area" should get.

pipe_resize_factor =2.0

pipe_resize_{min ,max}
##
Minimum / maximum size of the resulting request.

pipe_resize_min =0
pipe_resize_max =65536

A.3.6. File default-pipe_cmd.conf

82

A.3. Pipe Module Parameters

example–run/default–pipe_cmd.conf
#!/bin/bash
Copyright 2010 -2012 Thomas Schoebel -Theuer / 1&1 Internet AG
#
Copying and distribution of this file , with or without modification ,
are permitted in any medium without royalty provided the copyright
notice and this notice are preserved. This file is offered as-is,
without any warranty.

###

defaults for module pipe_cmd
##
pipe_cmd: insert arbitrary shell commands into the
input pipeline.

enable_pipe_cmd
##
Set to 0 or 1. Enable / disable this module.

enable_pipe_cmd =0

pipe_cmd
##
The command , will be executed in a subshell.

pipe_cmd="cat"

83

B. File Format

The *.load.gz and *.replay.gz files are in essence compressed CSV files, using “;” as de-
limiter. However, errors and comments can also occur in the file, violating the classical CSV
format.
In order to extract classical CSV, use the following command:

zgrep “;” myname .replay.gz | less

The first line of the output contains the column names (and could be removed by inserting |
tail -n +2 into the pipeline). In theory, you could even use MS Excel to work on the above
output. However, in practice the file will be so extremely large that interactive workstation
tools will likely start swapping your system to death, or even bombing.
So the usual way to operate on the output is a “pipe and filters style”, using stream-processing

tools like sed, awk, perl, and so on.
Both *.load.gz and *.replay.gz use the same format. However, *.load.gz must be

sorted numerically according to the timestamp, while *.replay.gz is usually unsorted (roughly
showing the order of request completion in most cases, which is different from the submis-
sion timestamp ordering). In order to re-use *.replay.gz again as input for another run of
blkreplay, you must sort it with sort -n. In some cases, public blktrace recordings at
www.blktrace.org/loads/ will contain only constants 0.0 as delays and latencies.
Feel free to filter your results, or create your own artifical loads.

Enjoy.

84

C. Validation of the blkreplay Tool

Some effort has been spent to check that blkreplay really produces the intended kind of IO
load on the target system, and that its measurement results are likely to be valid. However,
there is no guarantee against hidden bugs, misconfigurations, or other types of accidents. See
also the disclaimer of the GPL license.
The following tools try the help you by making blkreplay as transparent to the public as

possible, but cannot form an absolute guarantee against all possible sources of errors.
Please report any bugs to the author, or, even better, send patches or git pull requests.

C.1. Running blktrace during blkreplay

The timeliness of IO requests is already measured and displayed by the *.latency.* graphics.
The following steps will thus concentrate on completeness.
In order to check that all IO requests present in a *.load.gz file are actually applied to the

test candidate, you can (and should) re-record the IO load during an execution of blkreplay
via blktrace. The following steps are to be done manually:

1. Start blktrace manually, as described in chapter 4, before you start tree-replay.sh.
Be sure to catch all involved devices on all involved hosts.

2. Either kill blktrace with Ctrl-C after tree-replay.sh is done, or use the -w option to
specify a strictly longer (plus some safety margin) recording time.
Attention! some versions of blktrace seem to loose some requests in some buffers, at
least under some conditions. Usually the number of lost events is rather low, about 10.
Keep that in mind if you later discover some purpoted discrepancies!

3. Copy the resulting *.blktrace.[0-9]+ file to your workstation.

4. Invoke /path/to/blkreplay/scripts/check_replay_against_blktrace.sh myresult .replay.gz
mytrace-prefix (exactly two parameters).
Hint: the coincidence between myresult .replay.gz and myload .load.gzmust be checked
separately, using tools like cut and diff.

5. Enjoy the result in form of a wide side-by-side diff output.

Hint: no output means that no differences have been found. The timeliness as well as the order
of requests is not checked. Any difference means that a request is missing somewhere, or has
been altered in some way. Expect some minor differences (usully less than 1%, but sometimes
more) from request splitting by some device drivers.
Keep in mind that sometimes blktrace looses some events, leading to “false positives”. You

should take this as a validation of the validation tool ;)

C.2. Verbosity Graphics
Experts only. It is easy to draw wrong conclusions from this.
Enable the following parameters: verbose=10; enable_compress_ssh=1; graph_options="--static

--verbose" in your respective *.conf files.
The resulting *.replay.gz file will now contain huge masses of lines starting with INFO:

and carrying lots of internal variables, similar to debug / tracing output.

The sheer masses of data written to stdout (as such) my lead to distor-
tions of your measurements, e.g. artificial delays or even hangs. Always compare

85

C. Validation of the blkreplay Tool

to --verbose=0 under otherwise identical conditions, to be sure! In order to check
whether stdout could have become a bottleneck, please search for the lines with
flush_total=n.nnnnnnnnn (some timing with nanosecond resolution). In partic-
ular, the main thread (additionally indicated by role=’main’) should have spent
much less time in fflush(stdout) than total running time. When the network
is the bottleneck, enable_compress_ssh=1 may help; otherwise disabling could be
better – please check.

In addition, the following types of internal visualizations will be produced:

*.submit_level.png
Shows the actual filling level of the pipelines between the main thread and the workers.
The x axis is in units of requests, and in completion order (different from the submission
order).

*.pushback_level.png
Shows the current number of requests on the pushback list. Only meaningful at --with-partial.

*.submit_ahead.png
Shows the time difference between submission to the pipelines (which is usually ahead of
the execution time, but not always) and the intended execution timestamp.

86

C.2. Verbosity Graphics

Don’t draw wrong conclusions from negative values here! They can be a
sign of “too late”, but the reason is almost always in the test candidate, just when
ordinary delays are produced.

*.submit_lag.png
The time difference between submission to the pipelines, and reception by the worker
thread (aka communication latency).

*.submit_lag_cumul.png
The same, but cumulized over time.

87

C. Validation of the blkreplay Tool

Notice than cumulation of time lags belonging to different threads is “un-
fair” by concept. Large values can regularly occur because of queueing in the submit
pipelines. Complaints about high values make only sense in case of $((bottleneck
<= threads)).

*.answer_lag.png
The time difference between submission to the answer pipeline caused by a worker thread,
and reception by the main thread (aka communication latency).

*.answer_lag_cumul.png
Dito, cumulated over time.

88

C.2. Verbosity Graphics

Similar warning as before: high values occur regularly in --with-ordering
mode. Only be startled in some other cases!

*.input_wait[_cumul].png
The time differences before and after fgets() (aka stalls in stdin). When these numbers
get too high, this time you should be alerted quite rightly.

89

C. Validation of the blkreplay Tool

*.answer_wait[_cumul].png
The time difference of the main thread it is spending for answer wait. Not to be confused
with communication latencies! High number will occur regularly. It is even a sign of good
performance when the cumulation almost reaches the total processing time.

90

C.2. Verbosity Graphics

91

D. GNU Free Documentation License

fdl.txt

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation , Inc.
<http ://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies
of this license document , but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual , textbook , or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it , either commercially or noncommercially.
Secondarily , this License preserves for the author and publisher a way
to get credit for their work , while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License , which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software , because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work , regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work , in any medium , that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world -wide , royalty -free license , unlimited in duration , to use that
work under the conditions stated herein. The "Document", below ,
refers to any such manual or work. Any member of the public is a
licensee , and is addressed as "you". You accept the license if you
copy , modify or distribute the work in a way requiring permission
under copyright law.

A "Modified␣Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim , or with
modifications and/or translated into another language.

A "Secondary␣Section" is a named appendix or a front -matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document ’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus , if the Document is in
part a textbook of mathematics , a Secondary Section may not explain
any mathematics .) The relationship could be a matter of historical
connection with the subject or with related matters , or of legal ,
commercial , philosophical , ethical or political position regarding
them.

The "Invariant␣Sections" are certain Secondary Sections whose titles

92

are designated , as being those of Invariant Sections , in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover␣Texts" are certain short passages of text that are listed ,
as Front -Cover Texts or Back -Cover Texts , in the notice that says that
the Document is released under this License. A Front -Cover Text may
be at most 5 words , and a Back -Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine -readable copy ,
represented in a format whose specification is available to the
general public , that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor , and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup , or absence of markup , has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup , Texinfo input format , LaTeX input format , SGML
or XML using a publicly available DTD , and standard -conforming simple
HTML , PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG , XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors , SGML or XML for which the DTD and/or
processing tools are not generally available , and the
machine -generated HTML , PostScript or PDF produced by some word
processors for output purposes only.

The "Title␣Page" means , for a printed book , the title page itself ,
plus such following pages as are needed to hold , legibly , the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such , "Title␣Page" means
the text near the most prominent appearance of the work ’s title ,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled␣XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below , such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve␣the␣Title"
of such a section when you modify the Document means that it remains a
section "Entitled␣XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License , but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium , either
commercially or noncommercially , provided that this License , the
copyright notices , and the license notice saying this License applies
to the Document are reproduced in all copies , and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However , you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

93

D. GNU Free Documentation License

You may also lend copies , under the same conditions stated above , and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document , numbering more than 100, and the
Document ’s license notice requires Cover Texts , you must enclose the
copies in covers that carry , clearly and legibly , all these Cover
Texts: Front -Cover Texts on the front cover , and Back -Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers , as long as they preserve
the title of the Document and satisfy these conditions , can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly , you should put the first ones listed (as many as fit
reasonably) on the actual cover , and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine -readable Transparent
copy along with each Opaque copy , or state in or with each Opaque copy
a computer -network location from which the general network -using
public has access to download using public -standard network protocols
a complete Transparent copy of the Document , free of added material.
If you use the latter option , you must take reasonably prudent steps ,
when you begin distribution of Opaque copies in quantity , to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested , but not required , that you contact the authors of the
Document well before redistributing any large number of copies , to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above , provided that you release
the Modified Version under precisely this License , with the Modified
Version filling the role of the Document , thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition , you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers , if any) a title distinct
from that of the Document , and from those of previous versions
(which should , if there were any , be listed in the History section
of the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

B. List on the Title Page , as authors , one or more persons or entities
responsible for authorship of the modifications in the Modified
Version , together with at least five of the principal authors of the
Document (all of its principal authors , if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the
Modified Version , as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include , immediately after the copyright notices , a license notice

giving the public permission to use the Modified Version under the
terms of this License , in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document ’s license notice.

H. Include an unaltered copy of this License.

94

I. Preserve the section Entitled "History", Preserve its Title , and add
to it an item stating at least the title , year , new authors , and
publisher of the Modified Version as given on the Title Page. If
there is no section Entitled "History" in the Document , create one
stating the title , year , authors , and publisher of the Document as
given on its Title Page , then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location , if any , given in the Document for
public access to a Transparent copy of the Document , and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at
least four years before the Document itself , or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications",
Preserve the Title of the section , and preserve in the section all
the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document ,
unaltered in their text and in their titles. Section numbers
or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements"
or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front -matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document , you may at your option designate some or all
of these sections as invariant. To do this , add their titles to the
list of Invariant Sections in the Modified Version ’s license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties --for example , statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front -Cover Text , and a
passage of up to 25 words as a Back -Cover Text , to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front -Cover Text and one of Back -Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover , previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one , on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License , under the terms defined in section 4 above for modified
versions , provided that you include in the combination all of the
Invariant Sections of all of the original documents , unmodified , and
list them all as Invariant Sections of your combined work in its
license notice , and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License , and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents , make the title of each such section unique by
adding at the end of it, in parentheses , the name of the original
author or publisher of that section if known , or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

95

D. GNU Free Documentation License

In the combination , you must combine any sections Entitled "History"
in the various original documents , forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License , and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection , provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection , and
distribute it individually under this License , provided you insert a
copy of this License into the extracted document , and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works , in or on a volume of a storage or
distribution medium , is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation ’s users beyond what the individual works permit.
When the Document is included in an aggregate , this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document , then if the Document is less than one half of
the entire aggregate , the Document ’s Cover Texts may be placed on
covers that bracket the Document within the aggregate , or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification , so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders , but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License , and all the license notices in the
Document , and any Warranty Disclaimers , provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer , the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy , modify , sublicense , or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy , modify , sublicense , or distribute it is void , and
will automatically terminate your rights under this License.

However , if you cease all violation of this License , then your license
from a particular copyright holder is reinstated (a) provisionally ,

96

unless and until the copyright holder explicitly and finally
terminates your license , and (b) permanently , if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover , your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means , this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder , and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated , receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new , revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version , but may differ in
detail to address new problems or concerns. See
http ://www.gnu.org/copyleft /.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or␣any␣later␣version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License , you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used , that proxy ’s public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive␣Multiauthor␣Collaboration␣Site" (or "MMC␣Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A
public wiki that anybody can edit is an example of such a server. A
"Massive␣Multiauthor␣Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC -BY-SA" means the Creative Commons Attribution -Share Alike 3.0
license published by Creative Commons Corporation , a not -for -profit
corporation with a principal place of business in San Francisco ,
California , as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document , in whole or in
part , as part of another Document.

An MMC is "eligible␣for␣relicensing" if it is licensed under this
License , and if all works that were first published under this License
somewhere other than this MMC , and subsequently incorporated in whole or
in part into the MMC , (1) had no cover texts or invariant sections , and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC -BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written , include a copy of
the License in the document and put the following copyright and

97

D. GNU Free Documentation License

license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy , distribute and/or modify this document
under the terms of the GNU Free Documentation License , Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections , no Front -Cover Texts , and no Back -Cover Texts.
A copy of the license is included in the section entitled "GNU

␣␣␣␣Free␣Documentation␣License".

If you have Invariant Sections , Front -Cover Texts and Back -Cover Texts ,
replace the "with ... Texts." line with this:

with the Invariant Sections being LIST THEIR TITLES , with the
Front -Cover Texts being LIST , and with the Back -Cover Texts being LIST.

If you have Invariant Sections without Cover Texts , or some other
combination of the three , merge those two alternatives to suit the
situation.

If your document contains nontrivial examples of program code , we
recommend releasing these examples in parallel under your choice of
free software license , such as the GNU General Public License ,
to permit their use in free software.

98

	Why Synthetic Benchmarks suck
	How blkreplay works
	Principle
	Architecture of blkreplay
	Mode of Operation
	Overlapping of IO Requests
	Verification of Storage Semantics

	How to use blkreplay
	How to Avoid Common Pitfalls
	Pitfalls from Storage Virtualization
	Pitfalls from Caches
	Pitfalls from Cache Operation States
	Pitfalls from Cache Size

	Pitfalls from Workingset Sizes
	Pitfalls from Replay Device Sizes and Others
	Pitfalls from Parallelism in IO Systems
	Pitfalls from missing Parallelism
	Pitfalls from too high IO Parallelism

	Recommended Setup and Usage
	Planning Phase
	Describe the Scope of Project
	Describe the Setup of your Experiment
	Select blkreplay Load
	Selection of Replay Duration
	Total Project Time

	Setup Phase
	Lab setup
	Configuration Files
	Meaning of the Config File Parameters

	Benchmark Phase
	Visualization of Results
	Static Analysis (--static)
	Dynamic Analysis (--dynamic)

	Human Interpretation of Results
	Sonar Diagrams
	Delay Diagrams
	Throughput Diagrams
	Flying Diagrams
	Corrolation Diagrams

	Advanced Features
	Modules

	Lowlevel Details and Expert Usage
	Internal Overhead

	How to use blktrace for Recording of Natural Loads
	Experiences with some Setups and some Loads
	Overload Tests
	Overload with Artificial Bursts
	Overload with (Derived) Natural Loads

	Influence of Replay Parameters
	Influence of Request Ordering
	Influence of Number of Threads
	Influence of BBU units at RAID controllers
	Influence of Bottlenecks
	Influence of strong Mode

	Config File Parameters
	Basic Parameters
	File user_modules.conf:
	File default-main.conf:

	Ordinary Module Parameters
	File default-recreate_lvm.conf
	File default-create_lv.conf
	File default-iscsi_target_iet.conf
	File default-iscsi_initiator.conf
	File default-scheduler.conf
	File default-wipe.conf
	File default-bbu_megaraid.conf
	File default-graph.conf

	Pipe Module Parameters
	File default-pipe_repeat.conf
	File default-pipe_slip.conf
	File default-pipe_subst.conf
	File default-pipe_spread.conf
	File default-pipe_resize.conf
	File default-pipe_cmd.conf

	File Format
	Validation of the blkreplay Tool
	Running blktrace during blkreplay
	Verbosity Graphics

	GNU Free Documentation License

